Cardiovascular Disease Prevention Unit, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France.
Service de Biochimie, AP-HP, Paris-Saclay University, Bicetre University Hospital, and EA 7357, Paris-Saclay University, Orsay, France.
J Lipid Res. 2024 Feb;65(2):100494. doi: 10.1016/j.jlr.2023.100494. Epub 2023 Dec 29.
HDL particles vary in lipidome and proteome, which dictate their individual physicochemical properties, metabolism, and biological activities. HDL dysmetabolism in nondiabetic hypertriglyceridemia (HTG) involves subnormal HDL-cholesterol and apoAI levels. Metabolic anomalies may impact the qualitative features of both the HDL lipidome and proteome. Whether particle content of bioactive lipids and proteins may differentiate HDL subclasses (HDL2b, 2a, 3a, 3b, and 3c) in HTG is unknown. Moreover, little is known of the effect of statin treatment on the proteolipidome of hypertriglyceridemic HDL and its subclasses. Nondiabetic, obese, HTG males (n = 12) received pitavastatin calcium (4 mg/day) for 180 days in a single-phase, unblinded study. ApoB-containing lipoproteins were normalized poststatin. Individual proteolipidomes of density-defined HDL subclasses were characterized prestatin and poststatin. At baseline, dense HDL3c was distinguished by marked protein diversity and peak abundance of surface lysophospholipids, amphipathic diacylglycerol and dihydroceramide, and core cholesteryl ester and triacylglycerol, (normalized to mol phosphatidylcholine), whereas light HDL2b showed peak abundance of free cholesterol, sphingomyelin, glycosphingolipids (monohexosylceramide, dihexosylceramide, trihexosylceramide, and anionic GM3), thereby arguing for differential lipid transport and metabolism between subclasses. Poststatin, bioactive lysophospholipid (lysophosphatidylcholine, lysoalkylphosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylinositol) cargo was preferentially depleted in HDL3c. By contrast, baseline lipidomic profiles of ceramide, dihydroceramide and related glycosphingolipids, and GM3/phosphatidylcholine were maintained across particle subclasses. All subclasses were depleted in triacylglycerol and diacylglycerol/phosphatidylcholine. The abundance of apolipoproteins CI, CII, CIV, and M diminished in the HDL proteome. Statin treatment principally impacts metabolic remodeling of the abnormal lipidome of HDL particle subclasses in nondiabetic HTG, with lesser effects on the proteome.
高密度脂蛋白(HDL)颗粒在脂质组和蛋白质组方面存在差异,这些差异决定了它们各自的理化特性、代谢和生物学活性。非糖尿病性高甘油三酯血症(HTG)中 HDL 代谢异常涉及 HDL-胆固醇和载脂蛋白 AI 水平降低。代谢异常可能会影响 HDL 脂质组和蛋白质组的质量特征。在 HTG 中,生物活性脂质和蛋白质的颗粒含量是否可以区分 HDL 亚类(HDL2b、2a、3a、3b 和 3c)尚不清楚。此外,人们对他汀类药物治疗对高甘油三酯血症 HDL 及其亚类的脂蛋白组的影响知之甚少。在一项单相、非盲研究中,12 名非糖尿病性肥胖 HTG 男性接受了匹伐他汀钙(4mg/天)治疗 180 天。他汀类药物治疗后载脂蛋白 B 含量正常。在他汀类药物治疗前和治疗后,对密度定义的 HDL 亚类的个体脂蛋白组进行了特征描述。在基线时,致密 HDL3c 的特点是蛋白质多样性显著,表面溶血磷脂、两性二酰基甘油和二氢神经酰胺以及核心胆固醇酯和三酰甘油的峰值丰度较高(相对于 mol 磷脂酰胆碱归一化),而轻 HDL2b 的特征是游离胆固醇、神经鞘磷脂、糖脂(单己糖神经酰胺、二己糖神经酰胺、三己糖神经酰胺和带负电荷的 GM3)的峰值丰度较高,这表明亚类之间存在差异的脂质转运和代谢。他汀类药物治疗后,HDL3c 中优先耗尽了生物活性溶血磷脂(溶血磷脂酰胆碱、烷基溶血磷脂酰胆碱、溶血磷脂酰乙醇胺和溶血磷脂酰肌醇)。相比之下,在整个颗粒亚类中,鞘氨醇、二氢神经酰胺和相关糖脂以及 GM3/磷脂酰胆碱的基线脂质组学特征得以维持。所有亚类的三酰甘油和二酰基甘油/磷脂酰胆碱都减少。载脂蛋白 CI、CII、CIV 和 M 的丰度在 HDL 蛋白质组中减少。他汀类药物治疗主要影响非糖尿病性 HTG 中 HDL 颗粒亚类异常脂质组的代谢重塑,对蛋白质组的影响较小。