Suppr超能文献

使用3D忆阻神经形态系统监测帕金森病的时域特征

Monitoring time domain characteristics of Parkinson's disease using 3D memristive neuromorphic system.

作者信息

Siddique Md Abu Bakr, Zhang Yan, An Hongyu

机构信息

Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI, United States.

Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States.

出版信息

Front Comput Neurosci. 2023 Dec 15;17:1274575. doi: 10.3389/fncom.2023.1274575. eCollection 2023.

Abstract

INTRODUCTION

Parkinson's disease (PD) is a neurodegenerative disorder affecting millions of patients. Closed-Loop Deep Brain Stimulation (CL-DBS) is a therapy that can alleviate the symptoms of PD. The CL-DBS system consists of an electrode sending electrical stimulation signals to a specific region of the brain and a battery-powered stimulator implanted in the chest. The electrical stimuli in CL-DBS systems need to be adjusted in real-time in accordance with the state of PD symptoms. Therefore, fast and precise monitoring of PD symptoms is a critical function for CL-DBS systems. However, the current CL-DBS techniques suffer from high computational demands for real-time PD symptom monitoring, which are not feasible for implanted and wearable medical devices.

METHODS

In this paper, we present an energy-efficient neuromorphic PD symptom detector using memristive three-dimensional integrated circuits (3D-ICs). The excessive oscillation at beta frequencies (13-35 Hz) at the subthalamic nucleus (STN) is used as a biomarker of PD symptoms.

RESULTS

Simulation results demonstrate that our neuromorphic PD detector, implemented with an 8-layer spiking Long Short-Term Memory (S-LSTM), excels in recognizing PD symptoms, achieving a training accuracy of 99.74% and a validation accuracy of 99.52% for a 75%-25% data split. Furthermore, we evaluated the improvement of our neuromorphic CL-DBS detector using NeuroSIM. The chip area, latency, energy, and power consumption of our CL-DBS detector were reduced by 47.4%, 66.63%, 65.6%, and 67.5%, respectively, for monolithic 3D-ICs. Similarly, for heterogeneous 3D-ICs, employing memristive synapses to replace traditional Static Random Access Memory (SRAM) resulted in reductions of 44.8%, 64.75%, 65.28%, and 67.7% in chip area, latency, and power usage.

DISCUSSION

This study introduces a novel approach for PD symptom evaluation by directly utilizing spiking signals from neural activities in the time domain. This method significantly reduces the time and energy required for signal conversion compared to traditional frequency domain approaches. The study pioneers the use of neuromorphic computing and memristors in designing CL-DBS systems, surpassing SRAM-based designs in chip design area, latency, and energy efficiency. Lastly, the proposed neuromorphic PD detector demonstrates high resilience to timing variations in brain neural signals, as confirmed by robustness analysis.

摘要

引言

帕金森病(PD)是一种影响数百万患者的神经退行性疾病。闭环深部脑刺激(CL-DBS)是一种可缓解帕金森病症状的疗法。CL-DBS系统由一个向大脑特定区域发送电刺激信号的电极和一个植入胸部的电池供电刺激器组成。CL-DBS系统中的电刺激需要根据帕金森病症状的状态进行实时调整。因此,快速精确地监测帕金森病症状是CL-DBS系统的一项关键功能。然而,当前的CL-DBS技术在实时监测帕金森病症状方面存在高计算需求,这对于植入式和可穿戴医疗设备来说是不可行的。

方法

在本文中,我们展示了一种使用忆阻三维集成电路(3D-IC)的节能神经形态帕金森病症状检测器。底丘脑核(STN)处β频率(13 - 35Hz)的过度振荡被用作帕金森病症状的生物标志物。

结果

仿真结果表明,我们的神经形态帕金森病检测器采用8层脉冲长短期记忆(S-LSTM)实现,在识别帕金森病症状方面表现出色,对于75%-25%的数据划分,训练准确率达到99.74%,验证准确率达到99.52%。此外,我们使用NeuroSIM评估了我们的神经形态CL-DBS检测器的改进情况。对于单片3D-IC,我们的CL-DBS检测器的芯片面积、延迟、能量和功耗分别降低了47.4%、66.63%、65.6%和67.5%。同样,对于异构3D-IC,采用忆阻突触代替传统静态随机存取存储器(SRAM),芯片面积、延迟和功耗分别降低了44.8%、64.75%、65.28%和67.7%。

讨论

本研究引入了一种通过直接利用时域神经活动的脉冲信号来评估帕金森病症状的新方法。与传统频域方法相比,该方法显著减少了信号转换所需的时间和能量。该研究开创了在设计CL-DBS系统中使用神经形态计算和忆阻器的先河,在芯片设计面积、延迟和能源效率方面超越了基于SRAM的设计。最后,如稳健性分析所证实的,所提出的神经形态帕金森病检测器对脑神经信号的定时变化具有高弹性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a27/10754992/a4b44fcb48b9/fncom-17-1274575-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验