Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America.
The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America.
PLoS Negl Trop Dis. 2024 Jan 2;18(1):e0011873. doi: 10.1371/journal.pntd.0011873. eCollection 2024 Jan.
Flaviviruses such as Zika and dengue viruses are persistent health concerns in endemic regions worldwide. Efforts to combat the spread of flaviviruses have been challenging, as no antivirals or optimal vaccines are available. Prevention and treatment of flavivirus-induced diseases require a comprehensive understanding of their life cycle. However, several aspects of flavivirus biogenesis, including genome packaging and virion assembly, are not well characterized. In this study, we focused on flavivirus capsid protein (C) using Zika virus (ZIKV) as a model to investigate the role of the externally oriented α3 helix (C α3) without a known or predicted function. Alanine scanning mutagenesis of surface-exposed amino acids on C α3 revealed a critical CN67 residue essential for ZIKV virion production. The CN67A mutation did not affect dimerization or RNA binding of purified C protein in vitro. The virus assembly is severely affected in cells transfected with an infectious cDNA clone of ZIKV with CN67A mutation, resulting in a highly attenuated phenotype. We isolated a revertant virus with a partially restored phenotype by continuous passage of the CN67A mutant virus in Vero E6 cells. Sequence analysis of the revertant revealed a second site mutation in the viral membrane (M) protein MF37L, indicating a genetic interaction between the C and M proteins of ZIKV. Introducing the MF37L mutation on the mutant ZIKV CN67A generated a double-mutant virus phenotypically consistent with the isolated genetic revertant. Similar results were obtained with analogous mutations on C and M proteins of dengue virus, suggesting the critical nature of C α3 and possible C and M residues contributing to virus assembly in other Aedes-transmitted flaviviruses. This study provides the first experimental evidence of a genetic interaction between the C protein and the viral envelope protein M, providing a mechanistic understanding of the molecular interactions involved in the assembly and budding of Aedes-transmitted flaviviruses.
黄病毒属病毒,如寨卡病毒和登革热病毒,是全球流行地区持续存在的健康隐患。由于没有抗病毒药物或最佳疫苗,因此抗击黄病毒传播的努力具有挑战性。预防和治疗黄病毒引起的疾病需要全面了解其生命周期。然而,黄病毒生物发生的几个方面,包括基因组包装和病毒粒子组装,尚未得到很好的描述。在这项研究中,我们使用寨卡病毒(ZIKV)作为模型,专注于黄病毒衣壳蛋白(C),研究具有未知或预测功能的外部定向α3 螺旋(Cα3)的作用。对 Cα3 表面暴露的氨基酸进行丙氨酸扫描诱变,揭示了一个关键的 CN67 残基,对 ZIKV 病毒粒子的产生是必不可少的。CN67A 突变不影响体外纯化的 C 蛋白的二聚化或 RNA 结合。在转染具有 CN67A 突变的感染性 cDNA 克隆的细胞中,病毒组装受到严重影响,导致高度减毒表型。通过在 Vero E6 细胞中连续传代 CN67A 突变病毒,我们分离出一个部分恢复表型的回复病毒。对回复病毒的序列分析表明,病毒膜(M)蛋白 MF37L 中存在第二个点突变,表明 ZIKV 的 C 和 M 蛋白之间存在遗传相互作用。在突变的 ZIKV CN67A 上引入 MF37L 突变产生了一种表型与分离的遗传回复病毒一致的双突变病毒。在登革热病毒的 C 和 M 蛋白上进行类似的突变也得到了类似的结果,表明 Cα3 的关键性以及可能的 C 和 M 残基对其他按蚊传播的黄病毒的组装有贡献。这项研究提供了 C 蛋白与病毒包膜蛋白 M 之间遗传相互作用的第一个实验证据,为了解按蚊传播的黄病毒组装和出芽过程中的分子相互作用提供了机制上的认识。