Suppr超能文献

行走上下坡时力的机械感觉编码:力反馈可稳定竹节虫的腿部运动。

Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects.

机构信息

Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States.

Department of Neurobiology and Genetics, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany.

出版信息

J Neurophysiol. 2024 Feb 1;131(2):198-215. doi: 10.1152/jn.00414.2023. Epub 2024 Jan 3.

Abstract

Force feedback could be valuable in adapting walking to diverse terrains, but the effects of changes in substrate inclination on discharges of sensory receptors that encode forces have rarely been examined. In insects, force feedback is provided by campaniform sensilla, mechanoreceptors that monitor forces as cuticular strains. We neurographically recorded responses of stick insect tibial campaniform sensilla to "naturalistic" forces (joint torques) that occur at the hind leg femur-tibia (FT) joint in uphill, downhill, and level walking. The FT joint torques, obtained in a previous study that used inverse dynamics to analyze data from freely moving stick insects, are quite variable during level walking (including changes in sign) but are larger in magnitude and more consistent when traversing sloped surfaces. Similar to vertebrates, insects used predominantly extension torque in propulsion on uphill slopes and flexion torques to brake forward motion when going downhill. Sensory discharges to joint torques reflected the torque direction but, unexpectedly, often occurred as multiple bursts that encoded the rate of change of positive forces (dF/d) even when force levels were high. All discharges also showed hysteresis (history dependence), as firing substantially decreased or ceased during transient force decrements. These findings have been tested in simulation in a mathematical model of the sensilla (Szczecinski NS, Dallmann CJ, Quinn RD, Zill SN. 16: 065001, 2021) that accurately reproduced the biological data. Our results suggest the hypothesis that sensory feedback from the femoro-tibial joint indicating force dynamics (dF/d) can be used to counter the instability in traversing sloped surfaces in animals and, potentially, in walking machines. Discharges of sensory receptors (campaniform sensilla) in the hind legs of stick insects can differentially signal forces that occur in walking uphill versus walking downhill. Unexpectedly, sensory firing most closely reflects the rate of change of force (dF/d) even when the force levels are high. These signals have been replicated in a mathematical model of the receptors and could be used to stabilize leg movements both in the animal and in a walking robot.

摘要

力反馈在适应不同地形的行走中可能很有价值,但很少有人研究过基底倾斜变化对编码力的感觉受体放电的影响。在昆虫中,力反馈由机械感受器——鼓泡感受器官提供,这些感受器监测作为表皮应变的力。我们通过神经记录棒状昆虫胫骨鼓泡感受器官对后腿股骨-胫骨(FT)关节在爬坡、下坡和水平行走时产生的“自然”力(关节扭矩)的反应。FT 关节扭矩是在前一项研究中通过逆动力学获得的,该研究使用逆动力学分析自由移动棒状昆虫的数据,在水平行走过程中变化很大(包括符号变化),但在穿越倾斜表面时幅度更大且更一致。与脊椎动物相似,昆虫在上坡时主要使用伸展扭矩来推进,在下坡时使用弯曲扭矩来制动前进运动。关节扭矩的感觉放电反映了扭矩方向,但出人意料的是,即使力水平较高,它们也经常作为多个爆发发生,这些爆发编码了正力(dF/d)的变化率。所有放电还表现出滞后(历史依赖性),因为在瞬态力减少期间,发射显著减少或停止。这些发现已经在一个鼓泡感觉器官的数学模型(Szczecinski NS、Dallmann CJ、Quinn RD、Zill SN. 16: 065001, 2021)中进行了模拟测试,该模型准确地再现了生物数据。我们的结果表明了这样一种假设,即来自股骨-胫骨关节的力动态(dF/d)的感觉反馈可以用于抵消动物在穿越倾斜表面时的不稳定性,并且可能用于行走机器人。棒状昆虫后腿中的感觉受体(鼓泡感受器官)可以不同地信号传递在上坡行走和下坡行走中发生的力。出人意料的是,即使力水平较高,感觉发射也最能反映力的变化率(dF/d)。这些信号在感觉器官的数学模型中得到了复制,可以用于稳定动物和行走机器人中的腿部运动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6be/11286306/e257c3d705a4/jn-00414-2023r01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验