Suppr超能文献

使用深度卷积神经网络对消融病变进行自动分割:激光间质热疗后反应评估的基础。

Automated segmentation of ablated lesions using deep convolutional neural networks: A basis for response assessment following laser interstitial thermal therapy.

机构信息

Duke University School of Medicine, Durham, North Carolina, USA.

Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA.

出版信息

Neuro Oncol. 2024 Jun 3;26(6):1152-1162. doi: 10.1093/neuonc/noad261.

Abstract

BACKGROUND

Laser interstitial thermal therapy (LITT) of intracranial tumors or radiation necrosis enables tissue diagnosis, cytoreduction, and rapid return to systemic therapies. Ablated tissue remains in situ, resulting in characteristic post-LITT edema associated with transient clinical worsening and complicating post-LITT response assessment.

METHODS

All patients receiving LITT at a single center for tumors or radiation necrosis from 2015 to 2023 with ≥9 months of MRI follow-up were included. An nnU-Net segmentation model was trained to automatically segment contrast-enhancing lesion volume (CeLV) of LITT-treated lesions on T1-weighted images. Response assessment was performed using volumetric measurements.

RESULTS

Three hundred and eighty four unique MRI exams of 61 LITT-treated lesions and 6 control cases of medically managed radiation necrosis were analyzed. Automated segmentation was accurate in 367/384 (95.6%) images. CeLV increased to a median of 68.3% (IQR 35.1-109.2%) from baseline at 1-3 months from LITT (P = 0.0012) and returned to baseline thereafter. Overall survival (OS) for LITT-treated patients was 39.1 (9.2-93.4) months. Lesion expansion above 40% from volumetric nadir or baseline was considered volumetric progression. Twenty-one of 56 (37.5%) patients experienced progression for a volumetric progression-free survival of 21.4 (6.0-93.4) months. Patients with volumetric progression had worse OS (17.3 vs 62.1 months, P = 0.0015).

CONCLUSIONS

Post-LITT CeLV expansion is quantifiable and resolves within 6 months of LITT. Development of response assessment criteria for LITT-treated lesions is feasible and should be considered for clinical trials. Automated lesion segmentation could speed the adoption of volumetric response criteria in clinical practice.

摘要

背景

激光间质热疗(LITT)治疗颅内肿瘤或放射性坏死可进行组织诊断、细胞减灭和快速恢复全身治疗。消融的组织仍留在原处,导致与短暂临床恶化相关的特征性 LITT 后水肿,并使 LITT 后反应评估复杂化。

方法

纳入 2015 年至 2023 年在一家中心接受 LITT 治疗的肿瘤或放射性坏死患者,共 61 例 LITT 治疗病变,且至少有 9 个月的 MRI 随访。使用 nnU-Net 分割模型自动分割 LITT 治疗病变 T1 加权图像的增强病变体积(CeLV)。使用容积测量进行反应评估。

结果

共分析了 61 例 LITT 治疗病变和 6 例经医学管理的放射性坏死对照病例的 384 个独特 MRI 检查。367/384(95.6%)图像的自动分割准确。CeLV 在 LITT 后 1-3 个月增加至基线的中位数 68.3%(IQR 35.1-109.2%)(P=0.0012),此后恢复至基线。LITT 治疗患者的总生存期(OS)为 39.1(9.2-93.4)个月。容积最低点或基线之上的病变扩张超过 40%被认为是容积进展。56 例患者中有 21 例(37.5%)发生进展,容积无进展生存期为 21.4(6.0-93.4)个月。发生容积进展的患者 OS 更差(17.3 与 62.1 个月,P=0.0015)。

结论

LITT 后 CeLV 扩张是可量化的,并在 LITT 后 6 个月内消退。制定 LITT 治疗病变的反应评估标准是可行的,应考虑用于临床试验。自动病变分割可以加速容积反应标准在临床实践中的采用。

相似文献

2
Laser Interstitial Thermal Therapy to the Posterior Fossa: Challenges and Nuances.激光间质热疗至颅后窝:挑战与细节。
World Neurosurg. 2019 Dec;132:e124-e132. doi: 10.1016/j.wneu.2019.08.242. Epub 2019 Sep 10.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验