Suppr超能文献

机器学习在子宫内膜癌术前淋巴结转移状态识别中的价值:一项系统评价和荟萃分析

The value of machine learning in preoperative identification of lymph node metastasis status in endometrial cancer: a systematic review and meta-analysis.

作者信息

Ren Zhonglian, Chen Banghong, Hong Changying, Yuan Jiaying, Deng Junying, Chen Yan, Ye Jionglin, Li Yanqin

机构信息

Department of Obstetrics and Gynecology, Chengdu Shuangliu Distract Maternal and Child Health Hospital, Chengdu, China.

Data Science R&D Center of Yanchang Technology, Chengdu, China.

出版信息

Front Oncol. 2023 Dec 20;13:1289050. doi: 10.3389/fonc.2023.1289050. eCollection 2023.

Abstract

BACKGROUND

The early identification of lymph node metastasis status in endometrial cancer (EC) is a serious challenge in clinical practice. Some investigators have introduced machine learning into the early identification of lymph node metastasis in EC patients. However, the predictive value of machine learning is controversial due to the diversity of models and modeling variables. To this end, we carried out this systematic review and meta-analysis to systematically discuss the value of machine learning for the early identification of lymph node metastasis in EC patients.

METHODS

A systematic search was conducted in Pubmed, Cochrane, Embase, and Web of Science until March 12, 2023. PROBAST was used to assess the risk of bias in the included studies. In the process of meta-analysis, subgroup analysis was performed according to modeling variables (clinical features, radiomic features, and radiomic features combined with clinical features) and different types of models in various variables.

RESULTS

This systematic review included 50 primary studies with a total of 103,752 EC patients, 12,579 of whom had positive lymph node metastasis. Meta-analysis showed that among the machine learning models constructed by the three categories of modeling variables, the best model was constructed by combining radiomic features with clinical features, with a pooled c-index of 0.907 (95%CI: 0.886-0.928) in the training set and 0.823 (95%CI: 0.757-0.890) in the validation set, and good sensitivity and specificity. The c-index of the machine learning model constructed based on clinical features alone was not inferior to that based on radiomic features only. In addition, logistic regression was found to be the main modeling method and has ideal predictive performance with different categories of modeling variables.

CONCLUSION

Although the model based on radiomic features combined with clinical features has the best predictive efficiency, there is no recognized specification for the application of radiomics at present. In addition, the logistic regression constructed by clinical features shows good sensitivity and specificity. In this context, large-sample studies covering different races are warranted to develop predictive nomograms based on clinical features, which can be widely applied in clinical practice.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023420774.

摘要

背景

子宫内膜癌(EC)患者淋巴结转移状态的早期识别是临床实践中的一项严峻挑战。一些研究者已将机器学习引入EC患者淋巴结转移的早期识别中。然而,由于模型和建模变量的多样性,机器学习的预测价值存在争议。为此,我们进行了这项系统评价和荟萃分析,以系统地探讨机器学习在EC患者淋巴结转移早期识别中的价值。

方法

在PubMed、Cochrane、Embase和Web of Science中进行系统检索,直至2023年3月12日。使用PROBAST评估纳入研究的偏倚风险。在荟萃分析过程中,根据建模变量(临床特征、影像组学特征以及影像组学特征与临床特征相结合)和各变量中的不同类型模型进行亚组分析。

结果

本系统评价纳入了50项原发性研究,共103752例EC患者,其中12579例有阳性淋巴结转移。荟萃分析表明,在由三类建模变量构建的机器学习模型中,最佳模型是通过将影像组学特征与临床特征相结合构建的,在训练集中合并c指数为0.907(95%CI:0.886 - 0.928),在验证集中为0.823(95%CI:0.757 - 0.890),且具有良好的敏感性和特异性。仅基于临床特征构建的机器学习模型的c指数并不逊于仅基于影像组学特征构建的模型。此外,发现逻辑回归是主要的建模方法,并且对于不同类别的建模变量具有理想的预测性能。

结论

尽管基于影像组学特征与临床特征相结合的模型具有最佳的预测效率,但目前影像组学的应用尚无公认的规范。此外,由临床特征构建的逻辑回归显示出良好的敏感性和特异性。在此背景下,有必要开展涵盖不同种族的大样本研究,以开发基于临床特征的预测列线图,并可广泛应用于临床实践。

系统评价注册

https://www.crd.york.ac.uk/PROSPERO,标识符CRD42023420774。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f2/10761539/3a3a85d2c0c7/fonc-13-1289050-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验