Unit of Pharmacology, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
Department of Biomedical and Clinical Sciences, Pharmacovigilance and Clinical Research, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy.
Drug Saf. 2024 Mar;47(3):271-284. doi: 10.1007/s40264-023-01391-4. Epub 2024 Jan 4.
In refining drug safety signals, defining the object of study is crucial. While research has explored the effect of different event definitions, drug definition is often overlooked. The US FDA Adverse Event Reporting System (FAERS) records drug names as free text, necessitating mapping to active ingredients. Although pre-mapped databases exist, the subjectivity and lack of transparency of the mapping process lead to a loss of control over the object of study.
We implemented the DiAna dictionary, systematically mapping individual free-text instances to their corresponding active ingredients and linking them to the World Health Organization Anatomical Therapeutic Chemical (WHO-ATC) classification.
We retrieved all drug names reported to the FAERS (2004-December 2022). Using existing vocabularies and string editing, we automatically mapped free text to ingredients. We manually revised the mapping and linked it to the ATC classification.
We retrieved 18,151,842 reports, with 74,143,411 drug entries. We manually checked the first 14,832 terms, up to terms occurring over 200 times (96.88% of total drug entries), to 6282 unique active ingredients. Automatic unchecked translations extend the standardization to 346,854 terms (98.94%). The DiAna dictionary showed a higher sensitivity compared with RxNorm alone, particularly for specific drugs (e.g., rimegepant, adapalene, drospirenone, umeclidinium). The most prominent drug classes in the FAERS were immunomodulating (37.40%) and neurologic drugs (29.19%).
The DiAna dictionary, as a dynamic open-source tool, provides transparency and flexibility, enabling researchers to actively shape drug definitions during the mapping phase. This empowerment enhances accuracy, reproducibility, and interpretability of results.
在精炼药物安全信号时,定义研究对象至关重要。虽然研究已经探讨了不同事件定义的效果,但药物定义往往被忽视。美国 FDA 不良事件报告系统(FAERS)以自由文本形式记录药物名称,需要映射到活性成分。尽管存在预先映射的数据库,但映射过程的主观性和缺乏透明度导致对研究对象失去控制。
我们实施了 DiAna 字典,将单个自由文本实例系统地映射到其相应的活性成分,并将其链接到世界卫生组织解剖治疗化学分类(WHO-ATC)。
我们检索了 FAERS(2004 年-2022 年 12 月)报告的所有药物名称。使用现有词汇和字符串编辑,我们自动将自由文本映射到成分。我们手动修订了映射并将其链接到 ATC 分类。
我们检索到 18151842 份报告,其中包含 74143411 种药物。我们手动检查了前 14832 个术语,直到出现超过 200 次的术语(占总药物条目的 96.88%),以确定 6282 种独特的活性成分。未经检查的自动翻译将标准化扩展到 346854 个术语(98.94%)。与 RxNorm 相比,DiAna 字典具有更高的敏感性,尤其是对于特定药物(例如,rimegepant、阿达帕林、屈螺酮、乌美氯铵)。FAERS 中最主要的药物类别是免疫调节药物(37.40%)和神经药物(29.19%)。
作为一个动态的开源工具,DiAna 字典提供了透明度和灵活性,使研究人员能够在映射阶段主动塑造药物定义。这种授权增强了结果的准确性、可重复性和可解释性。