Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
Biotechnol Bioeng. 2024 Mar;121(3):915-930. doi: 10.1002/bit.28650. Epub 2024 Jan 4.
Genome-scale metabolic models provide a valuable resource to study metabolism and cell physiology. These models are employed with approaches from the constraint-based modeling framework to predict metabolic and physiological phenotypes. The prediction performance of genome-scale metabolic models can be improved by including protein constraints. The resulting protein-constrained models consider data on turnover numbers (k ) and facilitate the integration of protein abundances. In this systematic review, we present and discuss the current state-of-the-art regarding the estimation of kinetic parameters used in protein-constrained models. We also highlight how data-driven and constraint-based approaches can aid the estimation of turnover numbers and their usage in improving predictions of cellular phenotypes. Finally, we identify standing challenges in protein-constrained metabolic models and provide a perspective regarding future approaches to improve the predictive performance.
基因组规模代谢模型为研究代谢和细胞生理学提供了有价值的资源。这些模型采用基于约束的建模框架的方法来预测代谢和生理表型。通过包含蛋白质约束,基因组规模代谢模型的预测性能可以得到提高。由此产生的蛋白质约束模型考虑了周转率 (k) 的数据,并促进了蛋白质丰度的整合。在本系统评价中,我们介绍和讨论了目前在蛋白质约束模型中使用的动力学参数估计的最新技术。我们还强调了数据驱动和基于约束的方法如何有助于周转率的估计及其在改善细胞表型预测中的应用。最后,我们确定了蛋白质约束代谢模型中的现有挑战,并就未来提高预测性能的方法提供了一个视角。