Suppr超能文献

使用Pyomo和PharmaPy进行制药过程数字设计的模拟优化框架。

Simulation-optimization framework for the digital design of pharmaceutical processes using Pyomo and PharmaPy.

作者信息

Laky Daniel, Casas-Orozco Daniel, Laird Carl D, Reklaitis Gintaras V, Nagy Zoltan K

机构信息

Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA.

Chemical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Ind Eng Chem Res. 2022;61(43):16128-16140. doi: 10.1021/acs.iecr.2c01636. Epub 2022 Oct 24.

Abstract

The problem of performing model-based process design and optimization in the pharmaceutical industry is an important and challenging one both computationally and in choice of solution implementation. In this work, a framework is presented to directly utilize a process simulator via callbacks during derivative-based optimization. The framework allows users with little experience in translating mechanistic ODEs and PDEs to robust, fully discretized algebraic formulations, required for executing simultaneous equation-oriented optimization, to obtain mathematically guaranteed optima at a competitive solution time when compared with existing derivative-free and derivative-based frameworks. The effectiveness of the framework in accuracy of optimal solution as well as computational efficiency is analyzed on on two case studies: (i) an integrated 2-unit reaction synthesis train used for the synthesis of an anti-cancer active pharmaceutical ingredient, and (ii) a more complex flowsheet representing a common synthesis-purification-isolation train of a pharmaceutical manufacturing processes.

摘要

在制药行业中进行基于模型的工艺设计和优化,无论是在计算方面还是在解决方案实施的选择上,都是一个重要且具有挑战性的问题。在这项工作中,提出了一个框架,以便在基于导数的优化过程中通过回调直接利用过程模拟器。该框架允许在将机理常微分方程和偏微分方程转化为执行面向联立方程优化所需的稳健、完全离散代数公式方面经验较少的用户,在与现有的无导数和基于导数的框架相比具有竞争力的求解时间内获得数学上有保证的最优解。通过两个案例研究分析了该框架在最优解准确性和计算效率方面的有效性:(i)用于合成抗癌活性药物成分的集成两单元反应合成流程,以及(ii)代表制药生产过程常见合成 - 纯化 - 分离流程的更复杂流程图。

相似文献

1
Simulation-optimization framework for the digital design of pharmaceutical processes using Pyomo and PharmaPy.
Ind Eng Chem Res. 2022;61(43):16128-16140. doi: 10.1021/acs.iecr.2c01636. Epub 2022 Oct 24.
2
PharmaPy: An object-oriented tool for the development of hybrid pharmaceutical flowsheets.
Comput Chem Eng. 2021 Oct;153. doi: 10.1016/j.compchemeng.2021.107408.
3
Using PharmaPy with Jupyter Notebook to teach digital design in pharmaceutical manufacturing.
Comput Appl Eng Educ. 2023 Nov;31(6):1662-1677. doi: 10.1002/cae.22660. Epub 2023 Jul 27.
4
Application of PharmaPy in the digital design of the manufacturing process of an active pharmaceutical ingredient.
ESCAPE. 2021;50:333-339. doi: 10.1016/b978-0-323-88506-5.50053-x. Epub 2021 Jul 18.
6
Digital design of an integrated purification system for continuous pharmaceutical manufacturing.
Chem Eng Sci. 2024 Mar 5;285. doi: 10.1016/j.ces.2023.119534. Epub 2023 Dec 9.
7
Reaction kinetics determination and uncertainty analysis for the synthesis of the cancer drug lomustine.
Chem Eng Sci. 2023;275. doi: 10.1016/j.ces.2023.118591. Epub 2023 Jul 6.
8
Exploration and evaluation of modular concepts for the design of full-scale pharmaceutical manufacturing facilities.
Biotechnol Bioeng. 2024 Aug;121(8):2241-2257. doi: 10.1002/bit.28539. Epub 2023 Sep 3.
9
Optimization of key energy and performance metrics for drug product manufacturing.
Int J Pharm. 2023 Jan 25;631:122487. doi: 10.1016/j.ijpharm.2022.122487. Epub 2022 Dec 13.
10

引用本文的文献

1
Pyomo: Accidentally outrunning the bear.
Patterns (N Y). 2025 Jul 11;6(7):101311. doi: 10.1016/j.patter.2025.101311.
2
Using PharmaPy with Jupyter Notebook to teach digital design in pharmaceutical manufacturing.
Comput Appl Eng Educ. 2023 Nov;31(6):1662-1677. doi: 10.1002/cae.22660. Epub 2023 Jul 27.

本文引用的文献

1
PharmaPy: An object-oriented tool for the development of hybrid pharmaceutical flowsheets.
Comput Chem Eng. 2021 Oct;153. doi: 10.1016/j.compchemeng.2021.107408.
3
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验