Suppr超能文献

生理和转录分析揭示了猕猴桃(中华猕猴桃)耐热性增强突变体的抗性机制。

Physiological and transcriptional analyses reveal the resistance mechanisms of kiwifruit (Actinidia chinensis) mutant with enhanced heat tolerance.

作者信息

Yuan Ping, Shen Wanqi, Yang Liying, Tang Jiale, He Kejia, Xu Hai, Bu Fanwen

机构信息

Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan Province, China.

Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan Province, China.

出版信息

Plant Physiol Biochem. 2024 Feb;207:108331. doi: 10.1016/j.plaphy.2023.108331. Epub 2024 Jan 2.

Abstract

High temperature is an environmental stressor that severely threatens plant growth, development, and yield. In this study, we obtained a kiwifruit mutant (MT) of 'Hongyang' (WT) through Co-γ irradiation. The MT possessed different leaf morphology and displayed prominently elevated heat tolerance compared to the WT genotype. When exposure to heat stress, the MT plants exhibited stabler photosynthetic capacity and accumulated less reactive oxygen species, along with enhanced antioxidant capacity and higher expression levels of related genes in comparison with the WT plants. Moreover, global transcriptome profiling indicated that an induction in genes related to stress-responsive, phytohormone signaling, and transcriptional regulatory pathways, which might contribute to the upgrade of thermotolerance in the MT genotype. Collectively, the significantly enhanced thermotolerance of MT might be mainly attributed to profitable leaf structure variations, improved photosynthetic and antioxidant capacities, as well as extensive transcriptome reprogram. These findings would be insightful in elucidating the sophisticated mechanisms of kiwifruit response to heat stress, and suggest the MT holds great potential for future kiwifruit improvement with enhanced heat tolerance.

摘要

高温是一种严重威胁植物生长、发育和产量的环境胁迫因子。在本研究中,我们通过钴-γ射线辐照获得了‘红阳’(野生型)猕猴桃突变体(MT)。与野生型基因型相比,MT具有不同的叶片形态,且耐热性显著提高。在热胁迫下,与野生型植株相比,MT植株表现出更稳定的光合能力,积累的活性氧更少,同时抗氧化能力增强,相关基因的表达水平更高。此外,全转录组分析表明,与胁迫响应、植物激素信号传导和转录调控途径相关的基因被诱导,这可能有助于MT基因型耐热性的提升。总体而言,MT耐热性的显著增强可能主要归因于有益的叶片结构变异、光合和抗氧化能力的提高以及广泛的转录组重编程。这些发现对于阐明猕猴桃对热胁迫的复杂响应机制具有重要意义,并表明MT在未来培育耐热性增强的猕猴桃方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验