Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK; Birmingham Children's Hospital, Birmingham, UK.
Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
EBioMedicine. 2024 Feb;100:104958. doi: 10.1016/j.ebiom.2023.104958. Epub 2024 Jan 6.
The malignant childhood brain tumour, medulloblastoma, is classified clinically into molecular groups which guide therapy. DNA-methylation profiling is the current classification 'gold-standard', typically delivered 3-4 weeks post-surgery. Pre-surgery non-invasive diagnostics thus offer significant potential to improve early diagnosis and clinical management. Here, we determine tumour metabolite profiles of the four medulloblastoma groups, assess their diagnostic utility using tumour tissue and potential for non-invasive diagnosis using in vivo magnetic resonance spectroscopy (MRS).
Metabolite profiles were acquired by high-resolution magic-angle spinning NMR spectroscopy (MAS) from 86 medulloblastomas (from 59 male and 27 female patients), previously classified by DNA-methylation array (WNT (n = 9), SHH (n = 22), Group3 (n = 21), Group4 (n = 34)); RNA-seq data was available for sixty. Unsupervised class-discovery was performed and a support vector machine (SVM) constructed to assess diagnostic performance. The SVM classifier was adapted to use only metabolites (n = 10) routinely quantified from in vivo MRS data, and re-tested. Glutamate was assessed as a predictor of overall survival.
Group-specific metabolite profiles were identified; tumours clustered with good concordance to their reference molecular group (93%). GABA was only detected in WNT, taurine was low in SHH and lipids were high in Group3. The tissue-based metabolite SVM classifier had a cross-validated accuracy of 89% (100% for WNT) and, adapted to use metabolites routinely quantified in vivo, gave a combined classification accuracy of 90% for SHH, Group3 and Group4. Glutamate predicted survival after incorporating known risk-factors (HR = 3.39, 95% CI 1.4-8.1, p = 0.025).
Tissue metabolite profiles characterise medulloblastoma molecular groups. Their combination with machine learning can aid rapid diagnosis from tissue and potentially in vivo. Specific metabolites provide important information; GABA identifying WNT and glutamate conferring poor prognosis.
Children with Cancer UK, Cancer Research UK, Children's Cancer North and a Newcastle University PhD studentship.
儿童脑部恶性肿瘤——髓母细胞瘤,根据其分子特征可临床分为不同组别,这为治疗方案提供了指导。目前,基于 DNA 甲基化的组学分析是髓母细胞瘤的主要分类标准,通常在手术后 3-4 周进行。因此,术前非侵入性诊断具有显著的潜力,可以改善早期诊断和临床管理。在此,我们确定了髓母细胞瘤的四个组别中的肿瘤代谢物图谱,使用肿瘤组织评估其诊断效能,并利用体内磁共振波谱(MRS)评估其非侵入性诊断的可能性。
我们通过高分辨率魔角旋转 NMR 波谱(MAS)从 86 例髓母细胞瘤(59 例男性,27 例女性)中获得代谢物图谱,这些患者先前通过 DNA 甲基化芯片(WNT 组(n=9),SHH 组(n=22),Group3 组(n=21),Group4 组(n=34))进行了分类;其中 60 例患者的 RNA-seq 数据可用。我们进行了无监督的分类发现,并构建了支持向量机(SVM)以评估诊断性能。该 SVM 分类器被修改为仅使用体内 MRS 数据中常规定量的代谢物(n=10),并重新进行了测试。谷氨酸被评估为总生存期的预测因子。
我们确定了具有组特异性的代谢物图谱;肿瘤的聚类与参考分子组具有很好的一致性(93%)。GABA 仅在 WNT 组中检测到,SHH 组中的牛磺酸含量较低,Group3 组中的脂质含量较高。基于组织的代谢物 SVM 分类器的交叉验证准确率为 89%(WNT 组为 100%),而修改后使用体内常规定量的代谢物进行分类,SHH、Group3 和 Group4 的综合分类准确率为 90%。将已知的风险因素纳入后,谷氨酸的存在(HR=3.39,95%CI 1.4-8.1,p=0.025)可以预测患者的生存情况。
组织代谢物图谱可以描述髓母细胞瘤的分子特征。将其与机器学习相结合,有助于从组织和潜在的体内快速诊断。特定的代谢物提供了重要的信息;GABA 可以识别 WNT 组,而谷氨酸则预示着不良预后。
英国儿童癌症、英国癌症研究、儿童癌症北方和纽卡斯尔大学博士学生奖学金。