Suppr超能文献

高通量计算实现基于人群研究的自动化,以检测老年慢性肾脏病患者新门诊用药后30天不良结局风险:一项临床研究方案

High-Throughput Computing to Automate Population-Based Studies to Detect the 30-Day Risk of Adverse Outcomes After New Outpatient Medication Use in Older Adults with Chronic Kidney Disease: A Clinical Research Protocol.

作者信息

Abdullah Sheikh S, Rostamzadeh Neda, Muanda Flory T, McArthur Eric, Weir Matthew A, Sontrop Jessica M, Kim Richard B, Kamran Sedig, Garg Amit X

机构信息

London Health Sciences Centre and ICES Western, London, ON, Canada.

Insight Lab, Western University and ICES Western, London, ON, Canada.

出版信息

Can J Kidney Health Dis. 2024 Jan 6;11:20543581231221891. doi: 10.1177/20543581231221891. eCollection 2024.

Abstract

BACKGROUND

Safety issues are detected in about one third of prescription drugs in the years following regulatory agency approval. Older adults, especially those with chronic kidney disease, are at particular risk of adverse reactions to prescription drugs. This protocol describes a new approach that may identify credible drug-safety signals more efficiently using administrative health care data.

OBJECTIVE

To use high-throughput computing and automation to conduct 700+ drug-safety cohort studies in older adults in Ontario, Canada. Each study will compare 74 acute (30-day) outcomes in patients who start a new prescription drug (new users) to a group of nonusers with similar baseline health characteristics. Risks will be assessed within strata of baseline kidney function.

DESIGN AND SETTING

The studies will be population-based, new-user cohort studies conducted using linked administrative health care databases in Ontario, Canada (January 1, 2008, to March 1, 2020). The source population for these studies will be residents of Ontario aged 66 years or older who filled at least one outpatient prescription through the Ontario Drug Benefit (ODB) program during the study period (all residents have universal health care, and those aged 65+ have universal prescription drug coverage through the ODB).

PATIENTS

We identified 3.2 million older adults in the source population during the study period and built 700+ initial medication cohorts, each containing mutually exclusive groups of new users and nonusers. Nonusers were randomly assigned cohort entry dates that followed the same distribution of prescription start dates as new users. Eligibility criteria included a baseline estimated glomerular filtration rate (eGFR) measurement within 12 months before the cohort entry date (median time was 71 days before cohort entry in the new user group), no prior receipt of maintenance dialysis or a kidney transplant, and no prior prescriptions for drugs in the same subclass as the study drug. New users and nonusers will be balanced on ~400 baseline health characteristics using inverse probability of treatment weighting on propensity scores within 3 strata of baseline eGFR: ≥60, 45 to <60, <45 mL/min per 1.73 m.

OUTCOMES

We will compare new user and nonuser groups on 74 clinically relevant outcomes (17 composites and 57 individual outcomes) in the 30 days after cohort entry. We used a prespecified approach to identify these 74 outcomes.

STATISTICAL ANALYSIS PLAN

In each cohort, we will obtain eGFR-stratum-specific weighted risk ratios and risk differences using modified Poisson regression and binomial regression, respectively. Additive and multiplicative interaction by eGFR category will be examined. Drug-outcome associations that meet prespecified criteria (identified signals) will be further examined in additional analyses (including survival, negative-control exposure, and E-value analyses) and visualizations.

RESULTS

The initial medication cohorts had a median of 6120 new users per cohort (interquartile range: 1469-38 839) and a median of 1 088 301 nonusers (interquartile range: 751 697-1 267 009). Medications with the largest number of new users were amoxicillin trihydrate (n = 1 000 032), cephalexin (n = 571 566), prescription acetaminophen (n = 571 563), and ciprofloxacin (n = 504,374); 19% to 29% of new users in these cohorts had an eGFR <60 mL/min per 1.73 m.

LIMITATIONS

Despite our use of robust techniques to balance baseline indicators and to control for confounding by indication, residual confounding will remain a possibility. Only acute (30-day) outcomes will be examined. Our data sources do not include nonprescription (over-the-counter) drugs or drugs prescribed in hospitals and do not include outpatient prescription drug use in children or adults <65 years.

CONCLUSION

This accelerated approach to conducting postmarket drug-safety studies has the potential to more efficiently detect drug-safety signals in a vulnerable population. The results of this protocol may ultimately help improve medication safety.

摘要

背景

在监管机构批准后的几年里,约三分之一的处方药被发现存在安全问题。老年人,尤其是患有慢性肾病的老年人,对处方药发生不良反应的风险特别高。本方案描述了一种新方法,该方法可能利用行政医疗保健数据更有效地识别可靠的药物安全信号。

目的

利用高通量计算和自动化技术,在加拿大安大略省的老年人中开展700多项药物安全队列研究。每项研究将把开始使用新处方药的患者(新使用者)中的74种急性(30天)结局与一组具有相似基线健康特征的非使用者进行比较。将在基线肾功能分层内评估风险。

设计与背景

这些研究将是基于人群的新使用者队列研究,利用加拿大安大略省的行政医疗保健数据库进行关联分析(2008年1月1日至2020年3月1日)。这些研究的源人群将是安大略省66岁及以上的居民,他们在研究期间通过安大略药物福利(ODB)计划至少开具了一张门诊处方药(所有居民都享有全民医疗保健,65岁及以上的居民通过ODB享有全民处方药覆盖)。

患者

我们在研究期间确定了源人群中的320万老年人,并建立了700多个初始用药队列,每个队列包含相互排斥的新使用者和非使用者组。非使用者被随机分配队列进入日期,其遵循与新使用者相同的处方开始日期分布。纳入标准包括在队列进入日期前12个月内进行的基线估计肾小球滤过率(eGFR)测量(新使用者组队列进入前的中位时间为71天),既往未接受维持性透析或肾移植,且既往未开具与研究药物属于同一亚类的药物处方。新使用者和非使用者将根据基线eGFR的3个分层(≥60、45至<60、<45 mL/min per 1.73 m²)内倾向得分的治疗加权逆概率,在约400个基线健康特征上实现平衡。

结局

我们将在队列进入后的30天内,比较新使用者和非使用者组在74个临床相关结局(17个复合结局和57个个体结局)上的差异。我们采用预先指定的方法确定这74个结局。

统计分析计划

在每个队列中,我们将分别使用修正的泊松回归和二项回归,获得eGFR分层特异性加权风险比和风险差异。将检查按eGFR类别划分的相加和相乘交互作用。符合预先指定标准(已识别信号)的药物-结局关联将在额外分析(包括生存分析、阴性对照暴露分析和E值分析)和可视化中进一步检查。

结果

初始用药队列中每个队列的新使用者中位数为6120人(四分位间距:1469 - 38839),非使用者中位数为1088301人(四分位间距:751697 - 1267009)。新使用者数量最多的药物是三水合阿莫西林(n = 1000032)、头孢氨苄(n = 571566)、处方对乙酰氨基酚(n = 571563)和环丙沙星(n = 504374);这些队列中19%至29%的新使用者eGFR<60 mL/min per 1.73 m²。

局限性

尽管我们使用了稳健的技术来平衡基线指标并控制适应症混杂,但仍可能存在残余混杂。仅将检查急性(30天)结局。我们的数据源不包括非处方(非处方药)药物或医院开具的药物,也不包括儿童或65岁以下成年人的门诊处方药使用情况。

结论

这种加速开展上市后药物安全研究的方法有可能在弱势群体中更有效地检测药物安全信号。本方案的结果最终可能有助于提高用药安全性。

相似文献

3
Higher-Dose Gabapentinoids and the Risk of Adverse Events in Older Adults With CKD: A Population-Based Cohort Study.
Am J Kidney Dis. 2022 Jul;80(1):98-107.e1. doi: 10.1053/j.ajkd.2021.11.007. Epub 2021 Dec 31.
4
Association of Baclofen With Encephalopathy in Patients With Chronic Kidney Disease.
JAMA. 2019 Nov 26;322(20):1987-1995. doi: 10.1001/jama.2019.17725.
5
Prevalence of Low-Cost Generic Program Use in a Nationally Representative Cohort of Privately Insured Adults.
J Manag Care Spec Pharm. 2015 Dec;21(12):1162-70. doi: 10.18553/jmcp.2015.21.12.1162.
6
Initiation Dose of Allopurinol and the Risk of Severe Cutaneous Reactions in Older Adults With CKD: A Population-Based Cohort Study.
Am J Kidney Dis. 2022 Dec;80(6):730-739. doi: 10.1053/j.ajkd.2022.04.006. Epub 2022 May 27.
7
8
Low-Dose Methotrexate and Serious Adverse Events Among Older Adults With Chronic Kidney Disease.
JAMA Netw Open. 2023 Nov 1;6(11):e2345132. doi: 10.1001/jamanetworkopen.2023.45132.

引用本文的文献

1
Applicability Assessment of Technologies for Predictive and Prescriptive Analytics of Nephrology Big Data.
Proteomics. 2025 Jun;25(11-12):e202400135. doi: 10.1002/pmic.202400135. Epub 2025 May 27.

本文引用的文献

1
Methods for drug safety signal detection using routinely collected observational electronic health care data: A systematic review.
Pharmacoepidemiol Drug Saf. 2023 Jan;32(1):28-43. doi: 10.1002/pds.5548. Epub 2022 Nov 2.
3
New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race.
N Engl J Med. 2021 Nov 4;385(19):1737-1749. doi: 10.1056/NEJMoa2102953. Epub 2021 Sep 23.
5
Propensity score weighting for causal subgroup analysis.
Stat Med. 2021 Aug 30;40(19):4294-4309. doi: 10.1002/sim.9029. Epub 2021 May 12.
6
New-user and prevalent-user designs and the definition of study time origin in pharmacoepidemiology: A review of reporting practices.
Pharmacoepidemiol Drug Saf. 2021 Jul;30(7):960-974. doi: 10.1002/pds.5258. Epub 2021 May 10.
7
A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics.
Am J Epidemiol. 2021 Jul 1;190(7):1424-1433. doi: 10.1093/aje/kwab034.
8
Comparison of propensity score methods for pre-specified subgroup analysis with survival data.
J Biopharm Stat. 2020 Jul 3;30(4):734-751. doi: 10.1080/10543406.2020.1730868. Epub 2020 Mar 19.
9
Association of Baclofen With Encephalopathy in Patients With Chronic Kidney Disease.
JAMA. 2019 Nov 26;322(20):1987-1995. doi: 10.1001/jama.2019.17725.
10
Subgroup balancing propensity score.
Stat Methods Med Res. 2020 Mar;29(3):659-676. doi: 10.1177/0962280219870836. Epub 2019 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验