Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
Front Endocrinol (Lausanne). 2023 Dec 22;14:1304050. doi: 10.3389/fendo.2023.1304050. eCollection 2023.
Early-life conditions such as prenatal nutrition can have long-term effects on metabolic health, and these effects may differ between males and females. Understanding the biological mechanisms underlying sex differences in the response to early-life environment will improve interventions, but few such mechanisms have been identified, and there is no overall framework for understanding sex differences. Biological sex differences may be due to chromosomal sex, gonadal sex, or interactions between the two. This review describes approaches to distinguish between the roles of chromosomal and gonadal sex, and summarizes findings regarding sex differences in metabolism. The Four Core Genotypes (FCG) mouse model allows dissociation of the sex chromosome genotype from gonadal type, whereas the XY* mouse model can be used to distinguish effects of X chromosome dosage vs the presence of the Y chromosome. Gonadectomy can be used to distinguish between organizational (permanent) and activational (reversible) effects of sex hormones. Baseline sex differences in a variety of metabolic traits are influenced by both activational and organizational effects of gonadal hormones, as well as sex chromosome complement. Thus far, these approaches have not been widely applied to examine sex-dependent effects of prenatal conditions, although a number of studies have found activational effects of estradiol to be protective against the development of hypertension following early-life adversity. Genes that escape X chromosome inactivation (XCI), such as , contribute to baseline sex-differences in metabolism, while , another XCI escapee, leads to sex-dependent responses to prenatal maternal stress. Genome-wide approaches to the study of sex differences include mapping genetic loci influencing metabolic traits in a sex-dependent manner. Seeking enrichment for binding sites of hormone receptors among genes showing sexually-dimorphic expression can elucidate the relative roles of hormones. Using the approaches described herein to identify mechanisms underlying sex-dependent effects of early nutrition on metabolic health may enable the identification of fundamental mechanisms and potential interventions.
早期生活条件,如产前营养,会对代谢健康产生长期影响,而这些影响在男性和女性之间可能存在差异。了解早期环境对性别差异反应的生物学机制将改善干预措施,但目前发现的此类机制很少,也没有全面的框架来理解性别差异。生物学性别差异可能归因于染色体性别、性腺性别或两者之间的相互作用。这篇综述描述了区分染色体性别和性腺性别作用的方法,并总结了代谢方面性别差异的发现。Four Core Genotypes(FCG)小鼠模型可用于分离性染色体基因型与性腺类型,而 XY*小鼠模型可用于区分 X 染色体剂量效应与 Y 染色体的存在。去势术可用于区分性别激素的组织(永久性)和激活(可逆性)作用。各种代谢特征的基线性别差异受性腺激素的激活和组织作用以及性染色体组成的影响。到目前为止,这些方法尚未广泛应用于研究产前条件对性别依赖性的影响,尽管许多研究发现雌二醇的激活作用可预防早期生活逆境后高血压的发生。逃避 X 染色体失活(XCI)的基因,如 ,有助于代谢的基线性别差异,而另一个逃避 XCI 的基因 ,导致对产前母体应激的性别依赖性反应。研究性别差异的全基因组方法包括以性别依赖的方式绘制影响代谢特征的遗传基因座。在表现出性别差异表达的基因中寻找激素受体结合位点的富集,可以阐明激素的相对作用。使用本文所述的方法来确定早期营养对代谢健康的性别依赖性影响的机制,可以确定潜在的干预措施和基本机制。