Department of Public Health, Shihezi University School of Medicine, Shihezi, China.
Department of National Health Commission Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, China.
Front Endocrinol (Lausanne). 2023 Dec 22;14:1259062. doi: 10.3389/fendo.2023.1259062. eCollection 2023.
This study aimed to assess the association of baseline insulin resistance (IR) surrogates and their longitudinal trajectories with cardiovascular diseases (CVD) to provide a useful reference for preventing CVD.
This study was a prospective cohort study conducted in the 51st Regiment of the Third Division of Xinjiang Corps. A total of 6362 participants were recruited in 2016 to conduct the baseline survey, and the follow-up surveys in 2019, 2020, 2021, and 2022. The Kaplan-Meier method was used to estimate the cumulative incidence of CVD according to the baseline IR surrogates of metabolic insulin resistance score (METS-IR) and triglyceride-glucose (TyG) index. Cox regression models were used to assess the association between the baseline IR surrogates and CVD. The impact of the longitudinal trajectories of the IR surrogates on CVD was analyzed after excluding those with IR surrogate data measured ≤2 times. Based on the group-based trajectory model (GBTM), the trajectory patterns of IR surrogates were determined. The Kaplan-Meier method was used to estimate the cumulative incidence of CVD in each trajectory group of METS-IR and TyG index. Cox regression models were used to analyze the association between different trajectory groups of each index and CVD. In addition, the Framingham model was utilized to evaluate whether the addition of the baseline IR surrogates increased the predictive potential of the model.
Baseline data analysis included 4712 participants. During a median follow-up of 5.66 years, 572 CVD events were recorded (mean age, 39.42 ± 13.67 years; males, 42.9%). The cumulative CVD incidence increased with the ascending baseline METS-IR and TyG index quartiles (Q1-Q4). The hazard ratio and 95% confidence interval for CVD risk in Q4 of the METS-IR and TyG index were 1.79 (1.25, 2.58) and 1.66 (1.28, 2.17), respectively, when compared with Q1. 4343 participants were included in the trajectory analysis, based on the longitudinal change patterns of the METS-IR and TyG index, the following three trajectory groups were identified: low-increasing, moderate-stable, and elevated-increasing groups. Multivariate Cox regression revealed that the hazard ratio (95% confidence interval) for CVD risk in the elevated-increasing trajectory group of the METS-IR and TyG index was 2.13 (1.48, 3.06) and 2.63 (1.68, 4.13), respectively, when compared with the low-rising group. The C-index, integrated discrimination improvement value, and net reclassification improvement value were enhanced after adding the baseline METS-IR and TyG index values to the Framingham model (<0.05).
Elevated baseline IR surrogates and their higher long-term trajectories were strongly associated with a high risk of CVD incidence in Xinjiang's rural areas. Regular METS-IR and TyG index monitoring can aid in the early detection of CVD-risk groups.
本研究旨在评估基线胰岛素抵抗(IR)替代物及其纵向轨迹与心血管疾病(CVD)的相关性,为预防 CVD 提供有用的参考。
这是一项在新疆军区第 51 团进行的前瞻性队列研究。2016 年共招募了 6362 名参与者进行基线调查,并在 2019 年、2020 年、2021 年和 2022 年进行了随访调查。Kaplan-Meier 法用于根据代谢胰岛素抵抗评分(METS-IR)和甘油三酯-葡萄糖(TyG)指数的基线 IR 替代物估计 CVD 的累积发病率。Cox 回归模型用于评估基线 IR 替代物与 CVD 之间的相关性。在排除 IR 替代物数据测量≤2 次的参与者后,分析 IR 替代物的纵向轨迹对 CVD 的影响。基于基于群组的轨迹模型(GBTM)确定 IR 替代物的轨迹模式。Kaplan-Meier 法用于估计每个 METS-IR 和 TyG 指数轨迹组的 CVD 累积发病率。Cox 回归模型用于分析每个指数的不同轨迹组与 CVD 的相关性。此外,Framingham 模型用于评估基线 IR 替代物的增加是否增加了模型的预测潜力。
基线数据分析包括 4712 名参与者。在中位随访 5.66 年期间,记录了 572 例 CVD 事件(平均年龄,39.42±13.67 岁;男性,42.9%)。随着基线 METS-IR 和 TyG 指数四分位数(Q1-Q4)的升高,CVD 的累积发病率也随之升高。与 Q1 相比,METS-IR 和 TyG 指数 Q4 的 CVD 风险的危险比(95%置信区间)分别为 1.79(1.25,2.58)和 1.66(1.28,2.17)。基于 METS-IR 和 TyG 指数的纵向变化模式,4343 名参与者被纳入轨迹分析,确定了以下三个轨迹组:低升高、中稳定和升高升高组。多变量 Cox 回归显示,METS-IR 和 TyG 指数升高升高轨迹组的 CVD 风险的危险比(95%置信区间)分别为 2.13(1.48,3.06)和 2.63(1.68,4.13),与低升高组相比。添加基线 METS-IR 和 TyG 指数值后,Framingham 模型的 C 指数、综合判别改善值和净重新分类改善值均提高(<0.05)。
基线 IR 替代物升高及其长期轨迹升高与新疆农村地区 CVD 发病率的高风险密切相关。定期监测 METS-IR 和 TyG 指数有助于早期发现 CVD 风险人群。