Suppr超能文献

运用机器学习识别新诊断为急性淋巴细胞白血病的儿科患者的行政数据。

Applying machine learning to identify pediatric patients with newly diagnosed acute lymphoblastic leukemia using administrative data.

机构信息

Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

Department of Biostatistics, Epidemioloy and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Pediatr Blood Cancer. 2024 Mar;71(3):e30858. doi: 10.1002/pbc.30858. Epub 2024 Jan 8.

Abstract

Case identification in administrative databases is challenging as diagnosis codes alone are not adequate for case ascertainment. We utilized machine learning (ML) to efficiently identify pediatric patients with newly diagnosed acute lymphoblastic leukemia. We tested nine ML models and validated the best model internally and externally. The optimal model had 97% positive predictive value (PPV) and 99% sensitivity in internal validation; 94% PPV and 82% sensitivity in external validation. Our ML model identified a large cohort of 21,044 patients, demonstrating an efficient approach for cohort assembly and enhancing the usability of administrative data.

摘要

在行政数据库中识别病例具有挑战性,因为仅诊断代码不足以确定病例。我们利用机器学习 (ML) 来有效地识别新诊断为急性淋巴细胞白血病的儿科患者。我们测试了九个 ML 模型,并在内部和外部验证了最佳模型。内部验证中最优模型的阳性预测值 (PPV) 为 97%,灵敏度为 99%;外部验证中 PPV 为 94%,灵敏度为 82%。我们的 ML 模型确定了一个包含 21044 名患者的大队列,展示了一种用于队列组装的有效方法,并提高了行政数据的可用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验