Suppr超能文献

评估社区小组对健康不平等政策建模进行审查的参与者体验:SIPHER 联盟

Evaluating participant experiences of Community Panels to scrutinise policy modelling for health inequalities: the SIPHER Consortium.

作者信息

Stewart Ellen, Such Elizabeth

机构信息

University of Strathclyde, Glasgow, UK.

University of Nottingham, Nottingham, UK.

出版信息

Res Involv Engagem. 2024 Jan 8;10(1):4. doi: 10.1186/s40900-023-00521-7.

Abstract

Data-intensive research, including policy modelling, poses some distinctive challenges for efforts to mainstream public involvement into health research. There is a need for learning about how to design and deliver involvement for these types of research which are highly technical, and where researchers are at a distance from the people whose lives data depicts. This article describes our experiences involving members of the public in the SIPHER Consortium, a data-intensive policy modelling programme with researchers and policymakers working together over five years to try to address health inequalities. We focus on evaluating people's experiences as part of Community Panels for SIPHER. Key issues familiar from general public involvement efforts include practical details, careful facilitation of meetings, and payment for participants. We also describe some of the more particular learning around how to communicate technical research to non-academic audiences, in order to enable public scrutiny of research decisions. We conclude that public involvement in policy modelling can be meaningful and enjoyable, but that it needs to be carefully organised, and properly resourced.

摘要

数据密集型研究,包括政策建模,给将公众参与纳入健康研究主流的努力带来了一些独特的挑战。对于如何为这些高度技术性的研究设计并实现公众参与,以及如何让远离数据所描绘生活的研究人员与公众进行互动,都需要进行深入学习。本文介绍了我们让公众参与SIPHER联盟的经验,这是一个数据密集型政策建模项目,研究人员和政策制定者共同合作了五年,试图解决健康不平等问题。我们重点评估了公众作为SIPHER社区小组一部分的参与体验。公众参与工作中常见的关键问题包括实际细节、会议的精心引导以及参与者的报酬。我们还描述了一些关于如何向非学术受众传达技术研究的特殊经验,以便公众能够对研究决策进行审查。我们得出的结论是,公众参与政策建模可以是有意义且令人愉快的,但需要精心组织并有充足的资源支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9720/10775539/2f55ab793ee8/40900_2023_521_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验