Fritzsche Alexander, Biesenthal Tobias, Maczewsky Lukas J, Becker Karo, Ehrhardt Max, Heinrich Matthias, Thomale Ronny, Joglekar Yogesh N, Szameit Alexander
Institute of Physics, University of Rostock, Rostock, Germany.
Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, Germany.
Nat Mater. 2024 Mar;23(3):377-382. doi: 10.1038/s41563-023-01773-0. Epub 2024 Jan 9.
Topological insulators are a concept that originally stems from condensed matter physics. As a corollary to their hallmark protected edge transport, the conventional understanding of such systems holds that they are intrinsically closed, that is, that they are assumed to be entirely isolated from the surrounding world. Here, by demonstrating a parity-time-symmetric topological insulator, we show that topological transport exists beyond these constraints. Implemented on a photonic platform, our non-Hermitian topological system harnesses the complex interplay between a discrete coupling protocol and judiciously placed losses and, as such, inherently constitutes an open system. Nevertheless, even though energy conservation is violated, our system exhibits an entirely real eigenvalue spectrum as well as chiral edge transport. Along these lines, this work enables the study of the dynamical properties of topological matter in open systems without the instability arising from complex spectra. Thus, it may inspire the development of compact active devices that harness topological features on-demand.
拓扑绝缘体是一个最初源于凝聚态物理的概念。作为其标志性的受保护边缘输运的一个推论,对这类系统的传统理解认为它们本质上是封闭的,也就是说,它们被假定与周围世界完全隔离。在此,通过展示一个宇称 - 时间对称拓扑绝缘体,我们表明拓扑输运存在于这些限制之外。在光子平台上实现的我们的非厄米拓扑系统利用了离散耦合协议与精心设置的损耗之间的复杂相互作用,因此本质上构成一个开放系统。然而,尽管违反了能量守恒,我们的系统仍展现出完全实的本征值谱以及手性边缘输运。沿着这些思路,这项工作使得能够研究开放系统中拓扑物质的动力学性质,而不会因复谱产生不稳定性。因此,它可能会激发按需利用拓扑特性的紧凑型有源器件的发展。