Gupta Rohit, Barman Kuntal, Lee Liang-Yun, Chauhan Anuj, Huang Jian-Jang
Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan.
Department of Electrical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
Discov Nano. 2024 Jan 9;19(1):10. doi: 10.1186/s11671-023-03951-0.
Enhancement of nanoscale confinement in the subwavelength waveguide is a concern for advancing future photonic interconnects. Rigorous innovation of plasmonic waveguide-based structure is crucial in designing a reliable on-chip optical waveguide beyond the diffraction limit. Despite several structural modifications and architectural improvements, the plasmonic waveguide technology is far from reaching its maximum potential for mass-scale applications due to persistence issues such as insufficient confined energy and short propagation length. This work proposes a new method to amplify the propagating plasmons through an external on-chip surface acoustic signal. The gold-silicon dioxide (Au-SiO) interface, over Lithium Niobate (LN) substrate, is used to excite propagating surface plasmons. The voltage-varying surface acoustic wave (SAW) can tune the plasmonic confinement to a desired signal energy level, enhancing and modulating the plasmonic intensity. From our experimental results, we can increase the plasmonic intensity gain of 1.08 dB by providing an external excitation in the form of SAW at a peak-to-peak potential swing of 3 V, utilizing a single chip.
增强亚波长波导中的纳米级限制对于推进未来的光子互连至关重要。基于表面等离子体激元波导结构的严格创新对于设计超越衍射极限的可靠片上光波导至关重要。尽管进行了几次结构修改和架构改进,但由于存在诸如受限能量不足和传播长度短等持续性问题,表面等离子体激元波导技术远未达到其大规模应用的最大潜力。这项工作提出了一种通过外部片上表面声信号放大传播表面等离子体激元的新方法。在铌酸锂(LN)衬底上的金-二氧化硅(Au-SiO)界面用于激发传播表面等离子体激元。电压变化的表面声波(SAW)可以将表面等离子体激元限制调节到所需的信号能量水平,增强和调制表面等离子体激元强度。从我们的实验结果来看,利用单个芯片,通过在峰-峰值电位摆幅为3 V时以SAW的形式提供外部激励,我们可以将表面等离子体激元强度增益提高1.08 dB。