Sathe Neha A, Zelnick Leila R, Morrell Eric D, Bhatraju Pavan K, Kerchberger V Eric, Hough Catherine L, Ware Lorraine B, Fohner Alison E, Wurfel Mark M
Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA.
Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA.
Crit Care Med. 2024 May 1;52(5):764-774. doi: 10.1097/CCM.0000000000006181. Epub 2024 Jan 10.
Improving the efficiency of clinical trials in acute hypoxemic respiratory failure (HRF) depends on enrichment strategies that minimize enrollment of patients who quickly resolve with existing care and focus on patients at high risk for persistent HRF. We aimed to develop parsimonious models predicting risk of persistent HRF using routine data from ICU admission and select research immune biomarkers.
Prospective cohorts for derivation ( n = 630) and external validation ( n = 511).
Medical and surgical ICUs at two U.S. medical centers.
Adults with acute HRF defined as new invasive mechanical ventilation (IMV) and hypoxemia on the first calendar day after ICU admission.
None.
We evaluated discrimination, calibration, and practical utility of models predicting persistent HRF risk (defined as ongoing IMV and hypoxemia on the third calendar day after admission): 1) a clinical model with least absolute shrinkage and selection operator (LASSO) selecting Pa o2 /F io2 , vasopressors, mean arterial pressure, bicarbonate, and acute respiratory distress syndrome as predictors; 2) a model adding interleukin-6 (IL-6) to clinical predictors; and 3) a comparator model with Pa o2 /F io2 alone, representing an existing strategy for enrichment. Forty-nine percent and 69% of patients had persistent HRF in derivation and validation sets, respectively. In validation, both LASSO (area under the receiver operating characteristic curve, 0.68; 95% CI, 0.64-0.73) and LASSO + IL-6 (0.71; 95% CI, 0.66-0.76) models had better discrimination than Pa o2 /F io2 (0.64; 95% CI, 0.59-0.69). Both models underestimated risk in lower risk deciles, but exhibited better calibration at relevant risk thresholds. Evaluating practical utility, both LASSO and LASSO + IL-6 models exhibited greater net benefit in decision curve analysis, and greater sample size savings in enrichment analysis, compared with Pa o2 /F io2 . The added utility of LASSO + IL-6 model over LASSO was modest.
Parsimonious, interpretable models that predict persistent HRF may improve enrichment of trials testing HRF-targeted therapies and warrant future validation.
提高急性低氧性呼吸衰竭(HRF)临床试验的效率,依赖于富集策略,即尽量减少那些能通过现有治疗迅速康复的患者入组,而聚焦于持续性HRF高危患者。我们旨在利用重症监护病房(ICU)入院时的常规数据和选定的研究性免疫生物标志物,开发预测持续性HRF风险的简约模型。
用于模型推导(n = 630)和外部验证(n = 511)的前瞻性队列研究。
美国两个医疗中心的内科和外科ICU。
急性HRF成人患者,定义为ICU入院后首个日历日开始新的有创机械通气(IMV)且存在低氧血症。
无。
我们评估了预测持续性HRF风险(定义为入院后第三个日历日仍存在IMV和低氧血症)模型的辨别力、校准度和实际效用:1)一个临床模型,采用最小绝对收缩和选择算子(LASSO)选择动脉血氧分压/吸入氧分数值(Pa o2 /F io2 )、血管活性药物、平均动脉压、碳酸氢盐和急性呼吸窘迫综合征作为预测因子;2)一个在临床预测因子基础上加入白细胞介素-6(IL-6)的模型;3)一个仅以Pa o2 /F io2 为指标的对照模型,代表现有的富集策略。在推导集和验证集中,分别有49%和69%的患者存在持续性HRF。在验证中,LASSO模型(受试者工作特征曲线下面积,0.68;95%可信区间,0.64 - 0.73)和LASSO + IL-6模型(0.71;95%可信区间,0.66 - 0.76)的辨别力均优于Pa o2 /F io2 模型(0.64;95%可信区间,0.59 - 0.69)。两个模型在低风险十分位数中均低估了风险,但在相关风险阈值下校准度更好。在评估实际效用时,与Pa o2 /F io2 相比,LASSO模型和LASSO + IL-6模型在决策曲线分析中均显示出更大的净效益,在富集分析中样本量节省更多。LASSO + IL-6模型相对于LASSO模型增加的效用不大。
预测持续性HRF的简约、可解释模型可能会改善针对HRF靶向治疗试验的富集效果,值得未来进一步验证。