Laios Alexandros, Kalampokis Evangelos, Mamalis Marios-Evangelos, Thangavelu Amudha, Tan Yong Sheng, Hutson Richard, Munot Sarika, Broadhead Tim, Nugent David, Theophilou Georgios, Jackson Robert-Edward, De Jong Diederick
Department of Gynaecologic Oncology, St James's University Hospital, Leeds LS9 7TF, UK.
Department of Business Administration, University of Macedonia, 54636 Thessaloniki, Greece.
Diagnostics (Basel). 2023 Dec 30;14(1):94. doi: 10.3390/diagnostics14010094.
There is no well-defined threshold for intra-operative blood transfusion (BT) in advanced epithelial ovarian cancer (EOC) surgery. To address this, we devised a Machine Learning (ML)-driven prediction algorithm aimed at prompting and elucidating a communication alert for BT based on anticipated peri-operative events independent of existing BT policies. We analyzed data from 403 EOC patients who underwent cytoreductive surgery between 2014 and 2019. The estimated blood volume (EBV), calculated using the formula EBV = weight × 80, served for setting a 10% EBV threshold for individual intervention. Based on known estimated blood loss (EBL), we identified two distinct groups. The Receiver operating characteristic (ROC) curves revealed satisfactory results for predicting events above the established threshold (AUC 0.823, 95% CI 0.76-0.88). Operative time (OT) was the most significant factor influencing predictions. Intra-operative blood loss exceeding 10% EBV was associated with OT > 250 min, primary surgery, serous histology, performance status 0, R2 resection and surgical complexity score > 4. Certain sub-procedures including large bowel resection, stoma formation, ileocecal resection/right hemicolectomy, mesenteric resection, bladder and upper abdominal peritonectomy demonstrated clear associations with an elevated interventional risk. Our findings emphasize the importance of obtaining a rough estimate of OT in advance for precise prediction of blood requirements.
在晚期上皮性卵巢癌(EOC)手术中,术中输血(BT)没有明确的阈值。为了解决这个问题,我们设计了一种机器学习(ML)驱动的预测算法,旨在根据预期的围手术期事件提示并阐明关于BT的沟通警报,而不依赖于现有的BT政策。我们分析了2014年至2019年间接受减瘤手术的403例EOC患者的数据。使用公式EBV =体重×80计算的估计血容量(EBV)用于设定个体干预的10% EBV阈值。基于已知的估计失血量(EBL),我们确定了两个不同的组。受试者工作特征(ROC)曲线显示,对于预测高于既定阈值的事件,结果令人满意(AUC 0.823,95% CI 0.76-0.88)。手术时间(OT)是影响预测的最重要因素。术中失血量超过10% EBV与OT > 250分钟、初次手术、浆液性组织学、体能状态0、R2切除以及手术复杂性评分> 4相关。某些子程序,包括大肠切除、造口形成、回盲部切除/右半结肠切除、肠系膜切除、膀胱和上腹部腹膜切除术,显示出与较高的干预风险有明显关联。我们的研究结果强调了提前获得OT粗略估计对于精确预测血液需求的重要性。