Suppr超能文献

纳米多晶Al/Mg层状复合材料中的塑性变形机制:分子动力学研究

The Plastic Deformation Mechanism in Nano-Polycrystalline Al/Mg Layered Composites: A Molecular Dynamics Study.

作者信息

Li Zhou, Shen Tong, Hu Xiao, Zhang Lu, Jia Xianshi, Li Jiaqing, Zhang Che

机构信息

College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Changsha 410083, China.

出版信息

Nanomaterials (Basel). 2024 Jan 2;14(1):114. doi: 10.3390/nano14010114.

Abstract

Understanding plastic deformation behaviour is key to optimising the mechanical properties of nano-polycrystalline layered composites. This study employs the molecular dynamics (MD) simulation to comprehensively investigate the effects of various factors, such as grain sizes, strain rates, and the interlayer thicknesses of the intermetallic compounds (IMCs), on the plastic deformation behaviour of nano-polycrystalline Al/Mg layered composites. Our findings reveal that the influence of grain size on deformation behaviour is governed by the strain rate, and an increase in grain size is inversely proportional to yield stress at low strain rates, whereas it is positively proportional to tensile stress at high strain rates. Moreover, an optimal thickness of the intermediate layer contributes to enhanced composite strength, whereas an excessive thickness leads to reduced tensile strength due to the fewer grain boundaries (GBs) available for accommodating dislocations. The reinforcing impact of the intermediate IMCs layer diminishes at excessive strain rates, as the grains struggle to accommodate substantial large strains within a limited timeframe encountered at high strain rates. The insights into grain sizes, strain rates, and interlayer thicknesses obtained from this study enable the tailored development of nanocomposites with optimal mechanical characteristics.

摘要

了解塑性变形行为是优化纳米多晶层状复合材料力学性能的关键。本研究采用分子动力学(MD)模拟,全面研究了晶粒尺寸、应变速率和金属间化合物(IMC)的层间厚度等各种因素对纳米多晶Al/Mg层状复合材料塑性变形行为的影响。我们的研究结果表明,晶粒尺寸对变形行为的影响受应变速率控制,在低应变速率下,晶粒尺寸的增加与屈服应力成反比,而在高应变速率下,它与拉伸应力成正比。此外,中间层的最佳厚度有助于提高复合材料的强度,而厚度过大则会由于可用于容纳位错的晶界(GB)较少而导致拉伸强度降低。在过高的应变速率下,中间IMC层的增强作用会减弱,因为在高应变速率下有限的时间内,晶粒难以承受大量的大应变。本研究获得的关于晶粒尺寸、应变速率和层间厚度的见解有助于定制开发具有最佳力学特性的纳米复合材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e78/10781058/0fea26b248d1/nanomaterials-14-00114-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验