Suppr超能文献

TbsP 和 TrmB 共同调控 gapII 以影响古菌火球菌的细胞发育表型。

TbsP and TrmB jointly regulate gapII to influence cell development phenotypes in the archaeon Haloferax volcanii.

机构信息

Biology Department, Duke University, Durham, North Carolina, USA.

University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA.

出版信息

Mol Microbiol. 2024 Apr;121(4):742-766. doi: 10.1111/mmi.15225. Epub 2024 Jan 11.

Abstract

Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. "tablespoon"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.

摘要

微生物细胞必须不断适应环境条件的变化,调整其生理机能。生活在极端条件下的古菌,如高盐环境,就是这种适应能力的重要范例。模型嗜盐生物盐沼盐杆菌在形态、生物膜形成和运动性方面表现出显著的可塑性,以响应营养物质和细胞密度的变化。然而,调节这些生活方式转变的机制仍不清楚。在之前的研究中,我们表明转录调节因子 TrmB 通过激活糖异生代谢途径中酶编码基因的表达,维持相关物种盐沼盐杆菌的杆状形状。在 Hbt. salinarum 中,TrmB 依赖性葡萄糖部分的产生对于细胞表面糖蛋白生物发生是必需的。在这里,我们使用遗传学和定量表型分析组合的方法,证明 TrmB 对于 Hfx. volcanii 在糖异生条件下的生长是必需的。∆trmB 菌株在编码一种新型转录调节因子的基因中迅速积累了抑制突变,我们将其命名为 trmB 抑制剂或 TbsP(又名“tablespoon”)。TbsP 对于非生物表面(即生物膜形成)的粘附是必需的,并维持野生型细胞形态和运动性。我们使用功能基因组学和启动子融合分析来表征 TrmB 和 TbsP 控制的调控子,包括共同调节 gapII 的葡萄糖依赖性转录,该基因编码一种重要的糖异生酶。我们得出结论,TrmB 和 TbsP 共同调节糖异生,对 Hfx. volcanii 中响应营养物质的生活方式转变产生下游影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea1/11023807/c5be20c65337/nihms-1962767-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验