Suppr超能文献

六硝基六氮杂异伍兹烷(CL-20)的第一性原理分子动力学模拟与热分解动力学研究

First principles molecular dynamics simulation and thermal decomposition kinetics study of CL-20.

作者信息

Wu Jia, Hu Jianbo, Liu Qiao, Tang Yan, Liu Yonggang, Xiang Wei, Sun Shanhu, Suo Zhirong

机构信息

Analysis and Testing Center, Southwest University of Science and Technology, Mianyang, 621010, China.

Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China.

出版信息

J Mol Model. 2024 Jan 11;30(2):33. doi: 10.1007/s00894-024-05833-3.

Abstract

CONTEXT

2,4,6,8,10, 12-hexanitro-2,4,6,8,10, 12-hexazepane (CL-20) is a new energetic material with high performance and low sensitivity. In-depth study of the thermal decomposition mechanism of CL-20 is a necessary condition to improve its performance, ensure its safety, and optimize its application. On the basis of a large number of empirical force fields used in molecular dynamics simulation in the past, the machine learning augmented first-principles molecular dynamics method was used for the first time to simulate the thermal decomposition reaction of CL-20 at 2200 K, 2500 K, 2800 K, and 3000 K isothermal temperature. The main stable resulting compounds are N, CO, CO, HO, andH, where CO and HO continue to decompose at higher temperatures. The initial decomposition pathways are denitration by N-N fracture, ring-opening by C-N bond fracture, and redox reaction involving NO and CL-20. After ring opening, two main compounds, fused tricyclic pyrazine and azadicyclic, were formed, which were decomposed continuously to form monocyclic pyrazine and pyrazole ring structures. The most common fragments formed during decomposition are those containing two, three, four, and six carbons. The formation rule and quantity of main small molecule intermediates and resulting stable products under different simulated temperatures were analyzed.

METHODS

Based on ab initio Bayesian active learning algorithm, efficient and accurate prediction of CL-20 is made using the dynamic machine learning function of Vienna Ab-Initio Simulation Package (VASP), which constructs the energy potential surface by learning a large number of data based on AIMD calculations. The result is a machine learning force field (MLFF). Then the molecular dynamics of CL-20 was simulated using the trained MLFF model. PAW pseudopotentials and generalized gradient approximation (GGA), namely, Perdew-Burke-Ernzerhof (PBE) functional, are used in the calculation. The plane wave truncation energy (ENCUT) is set to 550 eV, and using the Gaussian broadening, the thermal broadening size of the single-electron orbital is 0.05 eV. A van der Waals revision of the system with Grimme Version 3. The energy convergence accuracy (EDIFF) of electron self-consistent iteration is set to 1E-5 eV and 1E-6 eV, respectively. The two-step structure optimization is carried out using 1'1'1 k point grid and conjugate gradient method. The ENCUT was changed to 500 eV and EDIFF to 1E-5 eV, and NVT integration (ISIF = 2) of Langevin thermostat was used for machine learning force field training and AIMD simulation of the system.

摘要

背景

2,4,6,8,10,12-六硝基-2,4,6,8,10,12-六氮杂异伍兹烷(CL-20)是一种新型高性能、低感度含能材料。深入研究CL-20的热分解机理是提高其性能、确保其安全性并优化其应用的必要条件。在过去分子动力学模拟中使用的大量经验力场的基础上,首次采用机器学习增强的第一性原理分子动力学方法,对CL-20在2200K、2500K、2800K和3000K等温温度下的热分解反应进行模拟。主要稳定产物为N、CO、CO₂、H₂O和H₂,其中CO和H₂O在较高温度下继续分解。初始分解途径为通过N-N断裂进行脱硝化、通过C-N键断裂进行开环以及涉及NO和CL-20的氧化还原反应。开环后,形成了两种主要化合物,稠合三环吡嗪和氮杂二环,并不断分解形成单环吡嗪和吡唑环结构。分解过程中形成的最常见碎片是含有两个、三个、四个和六个碳原子的碎片。分析了不同模拟温度下主要小分子中间体和稳定产物的生成规律及数量。

方法

基于从头算贝叶斯主动学习算法,利用维也纳从头算模拟包(VASP)的动态机器学习功能对CL-20进行高效准确的预测,该功能通过基于AIMD计算学习大量数据来构建能量势面。结果得到一个机器学习力场(MLFF)。然后使用训练好的MLFF模型对CL-20的分子动力学进行模拟。计算中使用PAW赝势和广义梯度近似(GGA),即Perdew-Burke-Ernzerhof(PBE)泛函。平面波截断能量(ENCUT)设置为550eV,使用高斯展宽,单电子轨道的热展宽大小为0.05eV。采用Grimme版本3对系统进行范德华修正。电子自洽迭代的能量收敛精度(EDIFF)分别设置为1E-5eV和1E-6eV。使用1×1×1k点网格和共轭梯度法进行两步结构优化。将ENCUT改为500eV,EDIFF改为1E-5eV,并使用朗之万恒温器的NVT积分(ISIF = 2)对系统进行机器学习力场训练和AIMD模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验