Suppr超能文献

用 AlphaFold2 预测来逼近构象 Boltzmann 分布的投影:机遇与局限。

Approximating Projections of Conformational Boltzmann Distributions with AlphaFold2 Predictions: Opportunities and Limitations.

机构信息

Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States.

Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States.

出版信息

J Chem Theory Comput. 2024 Feb 13;20(3):1434-1447. doi: 10.1021/acs.jctc.3c01081. Epub 2024 Jan 12.

Abstract

Protein thermodynamics is intimately tied to biological function and can enable processes such as signal transduction, enzyme catalysis, and molecular recognition. The relative free energies of conformations that contribute to these functional equilibria evolved for the physiology of the organism. Despite the importance of these equilibria for understanding biological function and developing treatments for disease, computational and experimental methods capable of quantifying the energetic determinants of these equilibria are limited to systems of modest size. Recently, it has been demonstrated that the artificial intelligence system AlphaFold2 can be manipulated to produce structurally valid protein conformational ensembles. Here, we extend these studies and explore the extent to which AlphaFold2 contact distance distributions can approximate projections of the conformational Boltzmann distributions. For this purpose, we examine the joint probability distributions of inter-residue contact distances along functionally relevant collective variables of several protein systems. Our studies suggest that AlphaFold2 normalized contact distance distributions can correlate with conformation probabilities obtained with other methods but that they suffer from peak broadening. We also find that the AlphaFold2 contact distance distributions can be sensitive to point mutations. Overall, we anticipate that our findings will be valuable as the community seeks to model the thermodynamics of conformational changes in large biomolecular systems.

摘要

蛋白质热力学与生物学功能密切相关,可以促进信号转导、酶催化和分子识别等过程。这些功能平衡的构象的相对自由能是为生物体的生理学而进化的。尽管这些平衡对于理解生物功能和开发疾病治疗方法非常重要,但能够量化这些平衡的能量决定因素的计算和实验方法仅限于中等规模的系统。最近,已经证明人工智能系统 AlphaFold2 可以被操纵以产生结构上有效的蛋白质构象集合。在这里,我们扩展了这些研究,并探讨了 AlphaFold2 接触距离分布在多大程度上可以近似构象玻尔兹曼分布的投影。为此,我们检查了几个蛋白质系统的功能相关集体变量的残基间接触距离的联合概率分布。我们的研究表明,AlphaFold2 归一化接触距离分布可以与其他方法获得的构象概率相关,但它们存在峰展宽。我们还发现,AlphaFold2 接触距离分布对点突变敏感。总的来说,我们预计我们的研究结果将是有价值的,因为社区正在寻求对大分子系统构象变化的热力学进行建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/024b/10867840/8587b9383528/ct3c01081_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验