Department of Electronics and Communication Engineering, Ramco Institute of Technology, Rajapalayam, Tamil Nadu, India.
Department of Electronics and Communication Engineering, K. Ramakrishnan College of Technology, Trichy, Tamil Nadu, India.
Electromagn Biol Med. 2024 Apr 2;43(1-2):1-18. doi: 10.1080/15368378.2024.2301952. Epub 2024 Jan 13.
Magnetic resonance imaging (MRI) is a powerful tool for tumor diagnosis in human brain. Here, the MRI images are considered to detect the brain tumor and classify the regions as meningioma, glioma, pituitary and normal types. Numerous existing methods regarding brain tumor detection were suggested previously, but none of the methods accurately categorizes the brain tumor and consumes more computation period. To address these problems, an Evolutionary Gravitational Neocognitron Neural Network optimized with Marine Predators Algorithm is proposed in this article for MRI Brain Tumor Classification (EGNNN-VGG16-MPA-MRI-BTC). Initially, the brain MRI pictures are collected under Brats MRI image dataset. By using Savitzky-Golay Denoising approach, these images are pre-processed. The features are extracted utilizing visual geometry group network (VGG16). By utilizing VGG16, the features, like Grey level features, Haralick Texture features are extracted. These extracted features are given to EGNNN classifier, which categorizes the brain tumor as glioma, meningioma, pituitary gland and normal. Batch Normalization (BN) layer of EGNNN is eliminated and included with VGG16 layer. Marine Predators Optimization Algorithm (MPA) optimizes the weight parameters of EGNNN. The simulation is activated in MATLAB. Finally, the EGNNN-VGG16-MPA-MRI-BTC method attains 38.98%, 46.74%, 23.27% higher accuracy, 24.24%, 37.82%, 13.92% higher precision, 26.94%, 47.04%, 38.94% higher sensitivity compared with the existing AlexNet-SVM-MRI-BTC, RESNET-SGD-MRI-BTC and MobileNet-V2-MRI-BTC models respectively.
磁共振成像(MRI)是人类大脑肿瘤诊断的有力工具。在这里,MRI 图像被用于检测脑肿瘤并将区域分类为脑膜瘤、神经胶质瘤、垂体和正常类型。以前已经提出了许多关于脑肿瘤检测的现有方法,但没有一种方法能够准确地对脑肿瘤进行分类,并且需要消耗更多的计算周期。为了解决这些问题,本文提出了一种基于 Marine Predators Algorithm 优化的 Evolutionary Gravitational Neocognitron Neural Network 用于 MRI 脑肿瘤分类(EGNNN-VGG16-MPA-MRI-BTC)。首先,从 Brats MRI 图像数据集收集脑 MRI 图像。通过使用 Savitzky-Golay 去噪方法对这些图像进行预处理。利用视觉几何组网络(VGG16)提取特征。利用 VGG16 提取灰度特征、Haralick 纹理特征等特征。将这些提取的特征输入 EGNNN 分类器,将脑肿瘤分类为神经胶质瘤、脑膜瘤、垂体瘤和正常。消除 EGNNN 的批量归一化(BN)层并将其与 VGG16 层结合。利用 Marine Predators Optimization Algorithm(MPA)优化 EGNNN 的权重参数。在 MATLAB 中激活仿真。最后,EGNNN-VGG16-MPA-MRI-BTC 方法的准确性、精度、敏感性分别比现有的 AlexNet-SVM-MRI-BTC、RESNET-SGD-MRI-BTC 和 MobileNet-V2-MRI-BTC 模型提高了 38.98%、46.74%、23.27%、24.24%、37.82%、13.92%、26.94%、47.04%、38.94%。