Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Anal Chem. 2024 Jan 30;96(4):1410-1418. doi: 10.1021/acs.analchem.3c03212. Epub 2024 Jan 14.
Multiclass metabolomics has become a popular technique for revealing the mechanisms underlying certain physiological processes, different tumor types, or different therapeutic responses. In multiclass metabolomics, it is highly important to uncover the underlying biological information on biosamples by identifying the metabolic markers with the most associations and classifying the different sample classes. The classification problem of multiclass metabolomics is more difficult than that of the binary problem. To date, various methods exist for constructing classification models and identifying metabolic markers consisting of well-established techniques and newly emerging machine learning algorithms. However, how to construct a superior classification model using these methods remains unclear for a given multiclass metabolomic data set. Herein, has been developed for constructing a superior classification model using metabolic markers identified in multiclass metabolomics. can enable online services, including () identifying metabolic markers by marker identification methods, () constructing classification models by classification methods, and () performing a comprehensive assessment from multiple perspectives to construct a superior classification model for multiclass metabolomics. In summary, is distinguished for its capability to construct a superior classification model using the most appropriate method through a comprehensive assessment, which makes it an important complement to other available tools in multiclass metabolomics. can be accessed at http://idrblab.cn/multiclassmetabo/.
多组学代谢组学已成为揭示某些生理过程、不同肿瘤类型或不同治疗反应机制的热门技术。在多组学代谢组学中,通过识别具有最多关联的代谢标志物并对不同样本类别进行分类,揭示生物样本的潜在生物学信息非常重要。多组学代谢组学的分类问题比二进制问题更具挑战性。迄今为止,已经存在各种用于构建分类模型和识别代谢标志物的方法,这些方法包括成熟的技术和新兴的机器学习算法。然而,对于给定的多组学代谢组学数据集,如何使用这些方法构建一个优越的分类模型仍然不清楚。在这里,开发了用于使用多组学代谢组学中鉴定的代谢标志物构建优越分类模型的。可以实现在线服务,包括 () 通过标志物鉴定方法鉴定代谢标志物,() 通过分类方法构建分类模型,以及 () 从多个角度进行综合评估,构建用于多组学代谢组学的优越分类模型。总之,通过综合评估使用最合适的方法构建优越分类模型是其区别于其他方法的特点,这使其成为多组学代谢组学中其他可用工具的重要补充。可在 http://idrblab.cn/multiclassmetabo/ 访问。