Rice University, Houston, TX.
University of Texas Health Science Center, Houston, TX.
AMIA Annu Symp Proc. 2024 Jan 11;2023:1324-1333. eCollection 2023.
The process of matching patients with suitable clinical trials is essential for advancing medical research and providing optimal care. However, current approaches face challenges such as data standardization, ethical considerations, and a lack of interoperability between Electronic Health Records (EHRs) and clinical trial criteria. In this paper, we explore the potential of large language models (LLMs) to address these challenges by leveraging their advanced natural language generation capabilities to improve compatibility between EHRs and clinical trial descriptions. We propose an innovative privacy-aware data augmentation approach for LLM-based patient-trial matching (LLM-PTM), which balances the benefits of LLMs while ensuring the security and confidentiality of sensitive patient data. Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%. Additionally, we present case studies to further illustrate the effectiveness of our approach and provide a deeper understanding of its underlying principles.
患者与合适临床试验的匹配过程对于推进医学研究和提供最佳护理至关重要。然而,当前的方法面临着数据标准化、伦理考虑以及电子健康记录 (EHR) 与临床试验标准之间缺乏互操作性等挑战。在本文中,我们探讨了大型语言模型 (LLM) 通过利用其先进的自然语言生成能力来提高 EHR 与临床试验描述之间的兼容性,从而解决这些挑战的潜力。我们提出了一种基于隐私感知的数据增强方法,用于基于 LLM 的患者-试验匹配 (LLM-PTM),在确保敏感患者数据的安全性和机密性的同时,平衡了 LLM 的优势。我们的实验表明,使用所提出的 LLM-PTM 方法平均可提高 7.32%的性能,并且可将新数据的泛化能力提高 12.12%。此外,我们还提供了案例研究,以进一步说明我们方法的有效性,并深入了解其基本原理。