Suppr超能文献

本构定律对红细胞膜在大应变下响应的影响。

Effect of constitutive law on the erythrocyte membrane response to large strains.

作者信息

Pepona Marianna, Gounley John, Randles Amanda

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

出版信息

Comput Math Appl. 2023 Feb 15;132:145-160. doi: 10.1016/j.camwa.2022.12.009. Epub 2023 Jan 3.

Abstract

Three constitutive laws, that is the Skalak, neo-Hookean and Yeoh laws, commonly employed for describing the erythrocyte membrane mechanics are theoretically analyzed and numerically investigated to assess their accuracy for capturing erythrocyte deformation characteristics and morphology. Particular emphasis is given to the nonlinear deformation regime, where it is known that the discrepancies between constitutive laws are most prominent. Hence, the experiments of optical tweezers and micropipette aspiration are considered here, for which relationships between the individual shear elastic moduli of the constitutive laws can also be established through analysis of the tension-deformation relationship. All constitutive laws were found to adequately predict the axial and transverse deformations of a red blood cell subjected to stretching with optical tweezers for a constant shear elastic modulus value. As opposed to Skalak law, the neo-Hookean and Yeoh laws replicated the erythrocyte membrane folding, that has been experimentally observed, with the trade-off of sustaining significant area variations. For the micropipette aspiration, the suction pressure-aspiration length relationship could be excellently predicted for a fixed shear elastic modulus value only when Yeoh law was considered. Importantly, the neo-Hookean and Yeoh laws reproduced the membrane wrinkling at suction pressures close to those experimentally measured. None of the constitutive laws suffered from membrane area compressibility in the micropipette aspiration case.

摘要

对常用于描述红细胞膜力学的三个本构定律,即斯卡拉定律、新胡克定律和杨格定律进行了理论分析和数值研究,以评估它们捕捉红细胞变形特征和形态的准确性。特别强调了非线性变形状态,众所周知,在该状态下本构定律之间的差异最为显著。因此,这里考虑了光镊和微吸管抽吸实验,通过分析张力-变形关系,也可以建立本构定律的各个剪切弹性模量之间的关系。对于恒定的剪切弹性模量值,发现所有本构定律都能充分预测用光学镊子拉伸的红细胞的轴向和横向变形。与斯卡拉定律不同,新胡克定律和杨格定律复制了实验观察到的红细胞膜折叠现象,但以承受显著的面积变化为代价。对于微吸管抽吸,只有考虑杨格定律时,才能在固定的剪切弹性模量值下出色地预测抽吸压力-抽吸长度关系。重要的是,新胡克定律和杨格定律在接近实验测量的抽吸压力下再现了膜起皱现象。在微吸管抽吸情况下,没有一个本构定律存在膜面积可压缩性问题。

相似文献

1
Effect of constitutive law on the erythrocyte membrane response to large strains.
Comput Math Appl. 2023 Feb 15;132:145-160. doi: 10.1016/j.camwa.2022.12.009. Epub 2023 Jan 3.
2
Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: Effects of the constitutive law and membrane modeling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041917. doi: 10.1103/PhysRevE.85.041917. Epub 2012 Apr 23.
4
Pendant capsule elastometry.
J Colloid Interface Sci. 2018 Mar 1;513:549-565. doi: 10.1016/j.jcis.2017.11.048. Epub 2017 Nov 20.
5
Comparison between spring network models and continuum constitutive laws: application to the large deformation of a capsule in shear flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 1):041918. doi: 10.1103/PhysRevE.83.041918. Epub 2011 Apr 22.
6
Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
Biomech Model Mechanobiol. 2020 Oct;19(5):1827-1843. doi: 10.1007/s10237-020-01311-w. Epub 2020 Feb 25.
7
Constitutive Model of Erythrocyte Membranes with Distributions of Spectrin Orientations and Lengths.
Biophys J. 2020 Dec 1;119(11):2190-2204. doi: 10.1016/j.bpj.2020.10.025. Epub 2020 Oct 30.
9
A finite element study of micropipette aspiration of single cells: effect of compressibility.
Comput Math Methods Med. 2012;2012:192618. doi: 10.1155/2012/192618. Epub 2012 Feb 9.
10
Large deformation of red blood cell ghosts in a simple shear flow.
Phys Fluids (1994). 1998 Aug;10(8):1834-1845. doi: 10.1063/1.869703. Epub 1998 Jul 1.

引用本文的文献

1
Enhancing Adaptive Physics Refinement Simulations Through the Addition of Realistic Red Blood Cell Counts.
Int Conf High Perform Comput Netw Storage Anal. 2023 Nov;2023. doi: 10.1145/3581784.3607105. Epub 2023 Nov 11.
2
A cell-and-plasma numerical model reveals hemodynamic stress and flow adaptation in zebrafish microvessels after morphological alteration.
PLoS Comput Biol. 2023 Dec 4;19(12):e1011665. doi: 10.1371/journal.pcbi.1011665. eCollection 2023 Dec.

本文引用的文献

1
Lattice Boltzmann simulations on the tumbling to tank-treading transition: effects of membrane viscosity.
Philos Trans A Math Phys Eng Sci. 2021 Oct 18;379(2208):20200395. doi: 10.1098/rsta.2020.0395. Epub 2021 Aug 30.
2
Loading and relaxation dynamics of a red blood cell.
Soft Matter. 2021 Jun 28;17(24):5978-5990. doi: 10.1039/d1sm00246e. Epub 2021 May 28.
3
Similar but Distinct Roles of Membrane and Interior Fluid Viscosities in Capsule Dynamics in Shear Flows.
Cardiovasc Eng Technol. 2021 Apr;12(2):232-249. doi: 10.1007/s13239-020-00517-4. Epub 2021 Jan 22.
4
A hyperelastic model for simulating cells in flow.
Biomech Model Mechanobiol. 2021 Apr;20(2):509-520. doi: 10.1007/s10237-020-01397-2. Epub 2020 Nov 20.
5
Multi-GPU Immersed Boundary Method Hemodynamics Simulations.
J Comput Sci. 2020 Jul;44. doi: 10.1016/j.jocs.2020.101153. Epub 2020 Jun 14.
6
On the effects of membrane viscosity on transient red blood cell dynamics.
Soft Matter. 2020 Jul 8;16(26):6191-6205. doi: 10.1039/d0sm00587h.
7
Flow-Induced Transitions of Red Blood Cell Shapes under Shear.
Phys Rev Lett. 2018 Sep 14;121(11):118103. doi: 10.1103/PhysRevLett.121.118103.
8
Massively parallel simulations of hemodynamics in the primary large arteries of the human vasculature.
J Comput Sci. 2015 Jul;9:70-75. doi: 10.1016/j.jocs.2015.04.003. Epub 2015 Apr 17.
9
How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?
Biomech Model Mechanobiol. 2017 Oct;16(5):1645-1657. doi: 10.1007/s10237-017-0910-x. Epub 2017 May 3.
10
Dynamics of a single red blood cell in simple shear flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042710. doi: 10.1103/PhysRevE.92.042710. Epub 2015 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验