Suppr超能文献

ColonGen:一种高效的息肉分割系统,可使用新的综合数据集提高泛化能力。

ColonGen: an efficient polyp segmentation system for generalization improvement using a new comprehensive dataset.

机构信息

School of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

School of Automotive Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

出版信息

Phys Eng Sci Med. 2024 Mar;47(1):309-325. doi: 10.1007/s13246-023-01368-8. Epub 2024 Jan 15.

Abstract

Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths. While polyp detection is important for diagnosing CRC, high miss rates for polyps have been reported during colonoscopy. Most deep learning methods extract features from images using convolutional neural networks (CNNs). In recent years, vision transformer (ViT) models have been employed for image processing and have been successful in image segmentation. It is possible to improve image processing by using transformer models that can extract spatial location information, and CNNs that are capable of aggregating local information. Despite this, recent research shows limited effectiveness in increasing data diversity and generalization accuracy. This paper investigates the generalization proficiency of polyp image segmentation based on transformer architecture and proposes a novel approach using two different ViT architectures. This allows the model to learn representations from different perspectives, which can then be combined to create a richer feature representation. Additionally, a more universal and comprehensive dataset has been derived from the datasets presented in the related research, which can be used for improving generalizations. We first evaluated the generalization of our proposed model using three distinct training-testing scenarios. Our experimental results demonstrate that our ColonGen-V1 outperforms other state-of-the-art methods in all scenarios. As a next step, we used the comprehensive dataset for improving the performance of the model against in- and out-of-domain data. The results show that our ColonGen-V2 outperforms state-of-the-art studies by 5.1%, 1.3%, and 1.1% in ETIS-Larib, Kvasir-Seg, and CVC-ColonDB datasets, respectively. The inclusive dataset and the model introduced in this paper are available to the public through this link: https://github.com/javadmozaffari/Polyp_segmentation .

摘要

结直肠癌(CRC)是癌症相关死亡的最常见原因之一。虽然息肉检测对于诊断 CRC 很重要,但结肠镜检查中息肉的漏诊率很高。大多数深度学习方法使用卷积神经网络(CNN)从图像中提取特征。近年来,视觉转换器(ViT)模型已被用于图像处理,并在图像分割中取得了成功。使用可以提取空间位置信息的变压器模型和能够聚合局部信息的 CNN 可以提高图像处理的性能。尽管如此,最近的研究表明,增加数据多样性和泛化准确性的效果有限。本文基于变压器结构研究了息肉图像分割的泛化能力,并提出了一种使用两种不同 ViT 结构的新方法。这使得模型可以从不同角度学习表示,然后可以将这些表示组合起来创建更丰富的特征表示。此外,还从相关研究中呈现的数据集衍生出一个更通用和全面的数据集,可用于提高泛化能力。我们首先使用三种不同的训练-测试情景来评估我们提出的模型的泛化能力。我们的实验结果表明,在所有情景中,我们的 ColonGen-V1 都优于其他最先进的方法。下一步,我们使用综合数据集来提高模型对内部和外部数据的性能。结果表明,我们的 ColonGen-V2 在 ETIS-Larib、Kvasir-Seg 和 CVC-ColonDB 数据集上的性能分别比最先进的研究提高了 5.1%、1.3%和 1.1%。本文中介绍的综合数据集和模型可通过以下链接获得:https://github.com/javadmozaffari/Polyp_segmentation。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验