Suppr超能文献

PRA-Pred:基于结构的蛋白质-RNA 结合亲和力预测。

PRA-Pred: Structure-based prediction of protein-RNA binding affinity.

机构信息

Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.

Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan.

出版信息

Int J Biol Macromol. 2024 Feb;259(Pt 2):129490. doi: 10.1016/j.ijbiomac.2024.129490. Epub 2024 Jan 13.

Abstract

Understanding crucial factors that affect the binding affinity of protein-RNA complexes is vital for comprehending their recognition mechanisms. This study involved compiling experimentally measured binding affinity (ΔG) values of 217 protein-RNA complexes and extracting numerous structure-based features, considering RNA, protein, and interactions between protein and RNA. Our findings indicate the significance of RNA base-step parameters, interaction energies, number of atomic contacts in the complex, hydrogen bonds, and contact potentials in understanding the binding affinity. Further, we observed that these factors are influenced by the type of RNA strand and the function of the protein in a protein-RNA complex. Multiple regression equations were developed for different classes of complexes to perform the prediction of the binding affinity between the protein and RNA. We evaluated the models using the jack-knife test and achieved an overall correlation 0.77 between the experimental and predicted binding affinities with a mean absolute error of 1.02 kcal/mol. Furthermore, we introduced a web server, PRA-Pred, intended for the prediction of protein-RNA binding affinity, and it is freely accessible through https://web.iitm.ac.in/bioinfo2/prapred/. We propose that our approach could function as a potential resource for investigating protein-RNA recognitions and developing therapeutic strategies.

摘要

了解影响蛋白质-RNA 复合物结合亲和力的关键因素对于理解它们的识别机制至关重要。本研究涉及编译 217 个蛋白质-RNA 复合物的实验测量结合亲和力(ΔG)值,并提取许多基于结构的特征,考虑 RNA、蛋白质以及蛋白质和 RNA 之间的相互作用。我们的研究结果表明,RNA 碱基步参数、相互作用能、复合物中原子接触数、氢键和接触势在理解结合亲和力方面的重要性。此外,我们观察到这些因素受到蛋白质-RNA 复合物中 RNA 链类型和蛋白质功能的影响。为不同类别的复合物开发了多元回归方程,以进行蛋白质和 RNA 之间结合亲和力的预测。我们使用 jack-knife 测试评估了模型,实验和预测的结合亲和力之间的总体相关性为 0.77,平均绝对误差为 1.02 kcal/mol。此外,我们引入了一个名为 PRA-Pred 的蛋白质-RNA 结合亲和力预测的网络服务器,可通过 https://web.iitm.ac.in/bioinfo2/prapred/ 免费访问。我们提出,我们的方法可以作为研究蛋白质-RNA 识别和开发治疗策略的潜在资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验