Suppr超能文献

通过支撑电子纳米线切割T-NbO层状颗粒用于耐用锂离子电池

Pillaring Electronic Nano-Wires to Slice T-NbO Laminated Particles for Durable Lithium-Ion Batteries.

作者信息

Zheng Yongjian, Chen Keyi, Wang Lei, Chen Shuangqiang, Li Chilin

机构信息

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Small. 2024 Jun;20(25):e2308727. doi: 10.1002/smll.202308727. Epub 2024 Jan 16.

Abstract

T-NbO characterized by the pronounced intercalation pseudocapacitance effect, is regarded as a promising and alternative anode for fast-charging Li-ion batteries. However, its electrochemical kinetics are still hindered by the absence of sufficient and homogenous conductive wiring inside active microparticles. Herein, an in situ pillaring strategy of electronic nano-wires is proposed to slice T-NbO laminated particles for the development of durable and fast-charging anodes for Li-ion batteries. A micro-level layered structure consisting of nano-carbon-inserted T-NbO composite flakes is designed and enabled by successive ion exchange, slice exfoliation, in situ polymerization, and carbonization processes. The pillared carbon interlayer (derived from polyaniline) can serve as in-built conductive wires to promote and homogenize electron transfer inside the micro-level particles. The porous structure (formed by the self-assembly of exfoliated flakes) contributes to the improved electrolyte immersion and enhanced lithium migration. Benefitting from the kinetically favorable effects, the modified T-NbO anode achieves the high-rate capability (108.4 mAh g at 10 A g) and ultralong cycling durability (138 mAh g at 1.0 A g after 8000 cycles, with an average capacity decaying rate as small as 0.043‰). This work provides an effective strategy of electron wire pillaring with the slicing effect for laminated electrode materials with high tap density.

摘要

具有显著嵌入赝电容效应的T-NbO被认为是快速充电锂离子电池有前景的替代负极材料。然而,其电化学动力学仍受限于活性微粒内部缺乏足够且均匀的导电线路。在此,提出一种电子纳米线原位柱撑策略,将T-NbO层状颗粒切片,以开发用于锂离子电池的耐用且快速充电的负极材料。通过连续的离子交换、切片剥离、原位聚合和碳化过程,设计并实现了一种由纳米碳插入的T-NbO复合薄片组成的微观层状结构。柱状碳夹层(源自聚苯胺)可作为内置导线,促进并使微观颗粒内部的电子转移均匀化。多孔结构(由剥离薄片的自组装形成)有助于改善电解质浸润并增强锂迁移。受益于动力学上有利的效应,改性后的T-NbO负极实现了高倍率性能(10 A g下为108.4 mAh g)和超长循环耐久性(8000次循环后1.0 A g下为138 mAh g,平均容量衰减率低至0.043‰)。这项工作为具有高振实密度的层状电极材料提供了一种具有切片效应的电子线柱撑有效策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验