Qu Zhe, Ma Jiachen, Huang Yang, Li Tianming, Tang Hongmei, Wang Xiaoyu, Liu Siyuan, Zhang Kai, Lu Jing, Karnaushenko Dmitriy D, Karnaushenko Daniil, Zhu Minshen, Schmidt Oliver G
Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, 09126, Chemnitz, Germany.
Material Systems for Nanoelectronics, TU Chemnitz, 09107, Chemnitz, Germany.
Adv Mater. 2024 Apr;36(15):e2310667. doi: 10.1002/adma.202310667. Epub 2024 Jan 23.
Zn batteries show promise for microscale applications due to their compatibility with air fabrication but face challenges like dendrite growth and chemical corrosion, especially at the microscale. Despite previous attempts in electrolyte engineering, achieving successful patterning of electrolyte microscale devices has remained challenging. Here, successful patterning using photolithography is enabled by incorporating caffeine into a UV-crosslinked polyacrylamide hydrogel electrolyte. Caffeine passivates the Zn anode, preventing chemical corrosion, while its coordination with Zn ions forms a Zn-conducting complex that transforms into ZnCO and 2ZnCO·3Zn(OH) over cycling. The resulting Zn-rich interphase product significantly enhances Zn reversibility. In on-chip microbatteries, the resulting solid-electrolyte interphase allows the Zn||MnO full cell to cycle for over 700 cycles with an 80% depth of discharge. Integrating the photolithographable electrolyte into multilayer microfabrication creates a microbattery with a 3D Swiss-roll structure that occupies a footprint of 0.136 mm. This tiny microbattery retains 75% of its capacity (350 µAh cm) for 200 cycles at a remarkable 90% depth of discharge. The findings offer a promising solution for enhancing the performance of Zn microbatteries, particularly for on-chip microscale devices, and have significant implications for the advancement of autonomous microscale devices.
锌电池因其与空气制造工艺的兼容性而在微尺度应用中展现出前景,但面临诸如枝晶生长和化学腐蚀等挑战,尤其是在微尺度下。尽管此前在电解质工程方面有所尝试,但实现电解质微尺度器件的成功图案化仍具有挑战性。在此,通过将咖啡因掺入紫外线交联的聚丙烯酰胺水凝胶电解质中,实现了使用光刻技术的成功图案化。咖啡因使锌阳极钝化,防止化学腐蚀,同时其与锌离子的配位形成一种锌导电络合物,该络合物在循环过程中转化为碳酸锌和碱式碳酸锌。由此产生的富含锌的界面产物显著提高了锌的可逆性。在片上微型电池中,所得的固体电解质界面使锌||二氧化锰全电池能够以80%的放电深度循环超过700次。将可光刻电解质集成到多层微制造中,创造出一种具有三维瑞士卷结构的微型电池,其占地面积为0.136平方毫米。这种微型电池在90%的显著放电深度下,200次循环后仍保留其容量(350微安·平方厘米)的75%。这些发现为提高锌微型电池的性能提供了一个有前景的解决方案,特别是对于片上微尺度器件,并且对自主微尺度器件的发展具有重要意义。