Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India.
Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India.
Microbiol Res. 2024 Apr;281:127605. doi: 10.1016/j.micres.2024.127605. Epub 2024 Jan 12.
Spermidine is a poly-cationic molecule belonging to the family of polyamines and is ubiquitously present in all organisms. Salmonella synthesizes, and harbours specialized transporters to import spermidine. A group of polyamines have been shown to assist in Salmonella Typhimurium's virulence and regulation of Salmonella pathogenicity Inslad 1 (SPI-1) genes and stress resistance; however, the mechanism remains elusive. The virulence trait of Salmonella depends on its ability to employ multiple surface structures to attach and adhere to the surface of the target cells before invasion and colonization of the host niche. Our study discovers the mechanism by which spermidine assists in the early stages of Salmonella pathogenesis. For the first time, we report that Salmonella Typhimurium regulates spermidine transport and biosynthesis processes in a mutually inclusive manner. Using a mouse model, we show that spermidine is critical for invasion into the murine Peyer's patches, which further validated our in vitro cell line observation. We show that spermidine controls the mRNA expression of fimbrial (fimA) and non-fimbrial adhesins (siiE, pagN) in Salmonella and thereby assists in attachment to host cell surfaces. Spermidine also regulated the motility through the expression of flagellin genes by enhancing the translation of sigma-28, which features an unusual start codon and a poor Shine-Dalgarno sequence. Besides regulating the formation of the adhesive structures, spermidine tunes the expression of the two-component system BarA/SirA to regulate SPI-1 encoded genes. Thus, our study unravels a novel regulatory mechanism by which spermidine exerts critical functions during Salmonella Typhimurium pathogenesis.
精胺是一种多阳离子分子,属于多胺家族,广泛存在于所有生物体中。沙门氏菌合成并拥有专门的转运蛋白来导入精胺。一组多胺已被证明有助于增强鼠伤寒沙门氏菌的毒力和调节沙门氏菌致病性岛 1 (SPI-1) 基因和应激抗性;然而,其机制仍不清楚。沙门氏菌的毒力特性取决于其利用多种表面结构附着并粘附在靶细胞表面的能力,然后才能入侵和定植宿主小生境。我们的研究发现了精胺协助沙门氏菌发病早期的机制。我们首次报道鼠伤寒沙门氏菌以相互包容的方式调节精胺的转运和生物合成过程。使用小鼠模型,我们表明精胺对沙门氏菌侵入鼠派尔集合淋巴结至关重要,这进一步验证了我们在体外细胞系观察到的结果。我们表明精胺通过控制鞭毛基因(flgA)和非鞭毛黏附素(siiE、pagN)的 mRNA 表达来控制沙门氏菌的黏附,从而协助黏附到宿主细胞表面。精胺还通过增强具有异常起始密码子和较差的 Shine-Dalgarno 序列的 sigma-28 的翻译来调节鞭毛基因的表达,从而调节运动性。除了调节黏附结构的形成外,精胺还调节了两元件系统 BarA/SirA 的表达,以调节 SPI-1 编码基因。因此,我们的研究揭示了一种新的调节机制,精胺在鼠伤寒沙门氏菌发病过程中发挥关键作用。