Hu Shikun, Deng Zhihong, Liu Bingjun, Hu Maochuan, Xu Beiyuan, Yu Xuan
School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China; Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High Education Institute, Guangzhou 519083, China.
School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China; Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High Education Institute, Guangzhou 519083, China.
Sci Total Environ. 2024 Mar 10;915:170109. doi: 10.1016/j.scitotenv.2024.170109. Epub 2024 Jan 15.
The increase in storm surge events caused by climate change exacerbates adverse effects on seawater inundation in coastal areas. An accurate description of the water level curve is crucial for understanding the process of saltwater intrusion (SWI) resulting from storm surge. Most studies involving empirical surges as inputs to groundwater models, often simplify spatial and temporal seawater inundation processes, which may increase the uncertainty in vertical seawater intrusion. To address this gap, we employed a comprehensive modeling approach using storm surge model ADCIRC and numerical simulator HydroGeoSphere to reveal SWI dynamics during a historical storm surge event in a coastal farm, considering varying tidal-surge phases and typhoon intensities. Our findings indicate pronounced SWI variations even with consistently highest water level during a storm surge, contingent on prior tidal processes. The timing of typhoon landfall on an hourly scale yielded diverse water level curves, altering the function of SWI. Intriguingly, SWI exacerbates following a high tide with 31.2 % average salinity higher, highlighting the profound modulation effect of tidal levels on SWI. Local topography significantly influenced SWI dynamics. Ponds, for instance, retained elevated salinity levels for over 15 h, indicating a more prolonged exposure to salinity than roads. These findings underscore the importance of considering both tidal influences and topographical factors in understanding and mitigating SWI in coastal agricultural management.
气候变化导致的风暴潮事件增加,加剧了对沿海地区海水淹没的不利影响。准确描述水位曲线对于理解风暴潮引发的海水入侵(SWI)过程至关重要。大多数将经验性风暴潮作为地下水模型输入的研究,往往简化了空间和时间上的海水淹没过程,这可能会增加垂直海水入侵的不确定性。为了弥补这一差距,我们采用了一种综合建模方法,使用风暴潮模型ADCIRC和数值模拟器HydroGeoSphere,以揭示沿海农场历史风暴潮事件期间的海水入侵动态,同时考虑不同的潮汐-风暴潮阶段和台风强度。我们的研究结果表明,即使在风暴潮期间水位持续最高时,海水入侵也会有明显变化,这取决于先前的潮汐过程。台风每小时登陆时间产生了不同的水位曲线,改变了海水入侵的作用。有趣的是,在高潮之后海水入侵加剧,平均盐度高出31.2%,突出了潮汐水平对海水入侵的深远调节作用。当地地形显著影响了海水入侵动态。例如,池塘的盐度水平在15个多小时内一直居高不下,这表明其比道路更长时间地暴露在盐度环境中。这些发现强调了在沿海农业管理中理解和减轻海水入侵时考虑潮汐影响和地形因素的重要性。