Zhao Lei, Yin Jian, Lin Jinxin, Chen Cailing, Chen Liheng, Qiu Xueqing, Alshareef Husam N, Zhang Wenli
School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China.
Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
ACS Nano. 2024 Jan 30;18(4):3763-3774. doi: 10.1021/acsnano.3c11785. Epub 2024 Jan 18.
Zinc sulfide is a promising high-capacity anode for practical sodium-ion batteries, considering its high capacity and the low cost of zinc and sulfur sources. However, the pulverization of particulate zinc sulfide causes active mass collapse and penetration-induced short circuits of batteries. Herein, a zinc sulfide encapsulated in a nitrogen-doped carbon shell (ZnS@NC) was developed for high-performance anodes. The confinement effect of nitrogen-doped carbon stabilizes the active mass structure during cycling thanks to the robust chemically and electronically bonded connections between nitrogen-doped carbon and zinc sulfide nanoparticles. Furthermore, the cycling stability of the ZnS@NC anode is boosted by the robust inorganic-rich solid electrolyte interphase (SEI) formed in cyclic and linear ether-based electrolytes. The ZnS@NC anode displayed a reversible specific capacity of 584 mAh g, an excellent rate capability of 327 mAh g at 70 A g, and a highly stable cycling performance over 10000 cycles. This work provides a practical and promising approach to designing stable conversion anodes for high-performance sodium-ion batteries.
考虑到硫化锌的高容量以及锌和硫源的低成本,它是一种很有前景的用于实际钠离子电池的高容量负极材料。然而,颗粒状硫化锌的粉化会导致活性物质坍塌以及电池因穿透而短路。在此,一种封装在氮掺杂碳壳中的硫化锌(ZnS@NC)被开发用于高性能负极。由于氮掺杂碳与硫化锌纳米颗粒之间牢固的化学和电子键连接,氮掺杂碳的限域效应在循环过程中稳定了活性物质结构。此外,在环状和线性醚基电解质中形成的坚固的富无机固态电解质界面(SEI)提高了ZnS@NC负极的循环稳定性。ZnS@NC负极表现出584 mAh g的可逆比容量、在70 A g下327 mAh g的优异倍率性能以及超过10000次循环的高度稳定的循环性能。这项工作为设计用于高性能钠离子电池的稳定转换负极提供了一种切实可行且很有前景的方法。