Fang Yi, Wang He, Cao Demao, Cai Shengyu, Qian Chengxing, Feng Ming, Zhang Wentai, Cao Lei, Chen Hongjie, Wei Liangfeng, Mu Shuwen, Pei Zhijie, Li Jun, Wang Renzhi, Wang Shousen
Department of Neurosurgery, the Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.
Department of Neurosurgery, Fuzhou 900TH Hospital, Fuzong Clinical Medical College of Fujian Medical University, No. 156, Xi'erhuanbei Road, Fuzhou, Fujian, China.
Neuroradiology. 2024 Mar;66(3):353-360. doi: 10.1007/s00234-024-03287-1. Epub 2024 Jan 18.
Cavernous sinus invasion (CSI) plays a pivotal role in determining management in pituitary adenomas. The study aimed to develop a Convolutional Neural Network (CNN) model to diagnose CSI in multiple centers.
A total of 729 cases were retrospectively obtained in five medical centers with (n = 543) or without CSI (n = 186) from January 2011 to December 2021. The CNN model was trained using T1-enhanced MRI from two pituitary centers of excellence (n = 647). The other three municipal centers (n = 82) as the external testing set were imported to evaluate the model performance. The area-under-the-receiver-operating-characteristic-curve values (AUC-ROC) analyses were employed to evaluate predicted performance. Gradient-weighted class activation mapping (Grad-CAM) was used to determine models' regions of interest.
The CNN model achieved high diagnostic accuracy (0.89) in identifying CSI in the external testing set, with an AUC-ROC value of 0.92 (95% CI, 0.88-0.97), better than CSI clinical predictor of diameter (AUC-ROC: 0.75), length (AUC-ROC: 0.80), and the three kinds of dichotomizations of the Knosp grading system (AUC-ROC: 0.70-0.82). In cases with Knosp grade 3A (n = 24, CSI rate, 0.35), the accuracy the model accounted for 0.78, with sensitivity and specificity values of 0.72 and 0.78, respectively. According to the Grad-CAM results, the views of the model were confirmed around the sellar region with CSI.
The deep learning model is capable of accurately identifying CSI and satisfactorily able to localize CSI in multicenters.
海绵窦侵袭(CSI)在垂体腺瘤的治疗决策中起着关键作用。本研究旨在开发一种卷积神经网络(CNN)模型,用于在多个中心诊断CSI。
回顾性收集了2011年1月至2021年12月期间五个医疗中心的729例病例,其中有CSI的病例(n = 543)和无CSI的病例(n = 186)。使用来自两个垂体卓越中心的T1增强MRI(n = 647)对CNN模型进行训练。将另外三个市级中心的82例病例作为外部测试集导入,以评估模型性能。采用受试者操作特征曲线下面积值(AUC-ROC)分析来评估预测性能。使用梯度加权类激活映射(Grad-CAM)来确定模型的感兴趣区域。
CNN模型在外部测试集中识别CSI的诊断准确率较高(0.89),AUC-ROC值为0.92(95%CI,0.88 - 0.97),优于直径(AUC-ROC:0.75)、长度(AUC-ROC:0.80)以及Knosp分级系统的三种二分法(AUC-ROC:0.70 - 0.82)等CSI临床预测指标。在Knosp 3A级病例(n = 24,CSI发生率0.35)中,模型的准确率为0.78,敏感性和特异性值分别为0.72和0.78。根据Grad-CAM结果,模型的观察结果在有CSI的鞍区周围得到了证实。
深度学习模型能够准确识别CSI,并在多中心中令人满意地定位CSI。