Suppr超能文献

分子插层实现MoSe的相变用于持久的钠离子存储。

Molecular Intercalation Enables Phase Transition of MoSe for Durable Na-Ion Storage.

作者信息

Liu Lei, Li Boxin, Wang Jiaqi, Du Hongfang, Du Zhuzhu, Ai Wei

机构信息

Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.

Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China.

出版信息

Small. 2024 Jun;20(24):e2309647. doi: 10.1002/smll.202309647. Epub 2024 Jan 19.

Abstract

1T-MoSe is recognized as a promising anode material for sodium-ion batteries, thanks to its excellent electrical conductivity and large interlayer distance. However, its inherent thermodynamic instability often presents unparalleled challenges in phase control and stabilization. Here, a molecular intercalation strategy is developed to synthesize thermally stable 1T-rich MoSe, covalently bonded to an intercalated carbon layer (1T/2H-MoSe@C). Density functional theory calculations uncover that the introduced ethylene glycol molecules not only serve as electron donors, inducing a reorganization of Mo 4d orbitals, but also as sacrificial guest materials that generate a conductive carbon layer. Furthermore, the C─Se/C─O─Mo bonds encourage strong interfacial electronic coupling, and the carbon layer prevents the restacking of MoSe, regulating the maximum 1T phase to an impressive 80.3%. Consequently, the 1T/2H-MoSe@C exhibits an extraordinary rate capacity of 326 mAh g at 5 A g and maintains a long-term cycle stability up to 1500 cycles, with a capacity of 365 mAh g at 2 A g. Additionally, the full cell delivers an appealing energy output of 194 Wh kg at 208 W kg, with a capacity retention of 87.3% over 200 cycles. These findings contribute valuable insights toward the development of innovative transition metal dichalcogenides for next-generation energy storage technologies.

摘要

1T-MoSe由于其优异的导电性和较大的层间距,被认为是一种很有前途的钠离子电池负极材料。然而,其固有的热力学不稳定性常常在相控制和稳定方面带来前所未有的挑战。在此,开发了一种分子插层策略来合成与插层碳层共价键合的热稳定富1T的MoSe(1T/2H-MoSe@C)。密度泛函理论计算表明,引入的乙二醇分子不仅作为电子供体,诱导Mo 4d轨道的重新排列,还作为牺牲客体材料生成导电碳层。此外,C─Se/C─O─Mo键促进了强界面电子耦合,碳层阻止了MoSe的重新堆叠,将最大1T相调节至令人印象深刻的80.3%。因此,1T/2H-MoSe@C在5 A g下表现出326 mAh g的非凡倍率容量,并在高达1500次循环中保持长期循环稳定性,在2 A g下容量为365 mAh g。此外,全电池在208 W kg下提供了194 Wh kg的可观能量输出,在200次循环中的容量保持率为87.3%。这些发现为开发用于下一代储能技术的创新过渡金属二卤化物提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验