Suppr超能文献

荧光光谱法检测口腔黏膜病变及支持向量机对癌变阶段的分类。

Detection of oral mucosal lesions by the fluorescence spectroscopy and classification of cancerous stages by support vector machine.

机构信息

Faculty of Engineering and Technology (FEAT), Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, 442001, India.

Department of Physics, Indian Institute of Technology Kanpur (IITK), Kanpur, 208016, India.

出版信息

Lasers Med Sci. 2024 Jan 19;39(1):42. doi: 10.1007/s10103-024-03995-3.

Abstract

Detection of oral mucosal lesions has been performed by an in-house developed fluorescence-based portable device in the present study. A laser diode of 405 nm wavelength and a UV-visible spectrometer are utilized in the portable device as excitation and detection sources. At the 405 nm excitation wavelength, the flavin adenine dinucleotide (FAD) band at 500 nm and three porphyrin bands at 634, 676, and 703 nm are observed in the fluorescence spectrum of the oral cavity tissue. We have conducted this clinical study on a total of 189 tissue sites of 36 oral squamous cell carcinoma (OSCC) patients, 18 dysplastic (precancerous) patients, and 34 volunteers. Analysis of the fluorescence data has been performed by using the principal component analysis (PCA) method and support vector machine (SVM) classifier. PCA is applied first in the spectral data to reduce the dimension, and then classification among the three groups has been executed by employing the SVM. The SVM classifier includes linear, radial basis function (RBF), polynomial, and sigmoid kernels, and their classification efficacies are computed. Linear and RBF kernels on the testing data sets differentiated OSCC and dysplasia to normal with an accuracy of 100% and OSCC to dysplasia with an accuracy of 95% and 97%, respectively. Polynomial and sigmoid kernels showed less accuracy values among the groups ranging from 48 to 88% and 51 to 100%, respectively. The result indicates that fluorescence spectroscopy and the SVM classifier can help to identify early oral mucosal lesions with significant high accuracy.

摘要

本研究采用自主研发的基于荧光的便携式设备检测口腔黏膜病变。该便携式设备采用 405nm 激光二极管和紫外可见分光光度计作为激发和检测光源。在 405nm 激发波长下,口腔组织荧光光谱中观察到黄素腺嘌呤二核苷酸(FAD)在 500nm 处的带和三个卟啉带在 634、676 和 703nm 处。我们对 36 例口腔鳞状细胞癌(OSCC)患者、18 例异型增生(癌前病变)患者和 34 名志愿者的 189 个组织部位进行了这项临床研究。通过主成分分析(PCA)方法和支持向量机(SVM)分类器对荧光数据进行分析。首先在光谱数据中应用 PCA 方法来降低维度,然后通过 SVM 对三组进行分类。SVM 分类器包括线性、径向基函数(RBF)、多项式和 sigmoid 核,并计算了它们的分类效率。线性和 RBF 核在测试数据集上区分 OSCC 和异型增生与正常的准确率为 100%,OSCC 与异型增生的准确率分别为 95%和 97%。多项式和 sigmoid 核在组间的准确率值较低,范围为 48%至 88%和 51%至 100%。结果表明,荧光光谱和 SVM 分类器可以帮助以显著的高精度识别早期口腔黏膜病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验