Zhang Hao, Huang Jinchao, Xie Junjie, Huang Weifeng, Yang Yuedong, Xu Mingyuan, Lei Jinping, Chen Hongming
School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China.
School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
J Chem Inf Model. 2024 Feb 12;64(3):666-676. doi: 10.1021/acs.jcim.3c01700. Epub 2024 Jan 19.
Fragment-based drug discovery (FBDD) is widely used in drug design. One useful strategy in FBDD is designing linkers for linking fragments to optimize their molecular properties. In the current study, we present a novel generative fragment linking model, GRELinker, which utilizes a gated-graph neural network combined with reinforcement and curriculum learning to generate molecules with desirable attributes. The model has been shown to be efficient in multiple tasks, including controlling log , optimizing synthesizability or predicted bioactivity of compounds, and generating molecules with high 3D similarity but low 2D similarity to the lead compound. Specifically, our model outperforms the previously reported reinforcement learning (RL) built-in method DRlinker on these benchmark tasks. Moreover, GRELinker has been successfully used in an actual FBDD case to generate optimized molecules with enhanced affinities by employing the docking score as the scoring function in RL. Besides, the implementation of curriculum learning in our framework enables the generation of structurally complex linkers more efficiently. These results demonstrate the benefits and feasibility of GRELinker in linker design for molecular optimization and drug discovery.
基于片段的药物发现(FBDD)在药物设计中被广泛应用。FBDD中的一种有用策略是设计连接子来连接片段,以优化其分子性质。在当前研究中,我们提出了一种新颖的生成式片段连接模型GRELinker,它利用门控图神经网络结合强化学习和课程学习来生成具有理想属性的分子。该模型已被证明在多个任务中是有效的,包括控制logP、优化化合物的合成可行性或预测生物活性,以及生成与先导化合物具有高3D相似性但低2D相似性的分子。具体而言,在这些基准任务上,我们的模型优于先前报道的强化学习(RL)内置方法DRlinker。此外,GRELinker已成功应用于一个实际的FBDD案例中,通过在RL中使用对接分数作为评分函数来生成具有增强亲和力的优化分子。此外,我们框架中课程学习的实现能够更有效地生成结构复杂的连接子。这些结果证明了GRELinker在用于分子优化和药物发现的连接子设计中的优势和可行性。