Suppr超能文献

相干超自旋机器中的超标度

Hyperscaling in the Coherent Hyperspin Machine.

作者信息

Calvanese Strinati Marcello, Conti Claudio

机构信息

Centro Ricerche Enrico Fermi (CREF), Via Panisperna 89a, 00184 Rome, Italy.

Physics Department, Sapienza University of Rome, 00185 Rome, Italy.

出版信息

Phys Rev Lett. 2024 Jan 5;132(1):017301. doi: 10.1103/PhysRevLett.132.017301.

Abstract

Classical and quantum systems are used to simulate the Ising Hamiltonian, an essential component in large-scale optimization and machine learning. However, as the system size increases, devices like quantum annealers and coherent Ising machines face an exponential drop in their success rate. Here, we introduce a novel approach involving high-dimensional embeddings of the Ising Hamiltonian and a technique called "dimensional annealing" to counteract the decrease in performance. This approach leads to an exponential improvement in the success rate and other performance metrics, slowing down the decline in performance as the system size grows. A thorough examination of convergence dynamics in high-performance computing validates the new methodology. Additionally, we suggest practical implementations using technologies like coherent Ising machines, all-optical systems, and hybrid digital systems. The proposed hyperscaling heuristics can also be applied to other quantum or classical Ising devices by adjusting parameters such as nonlinear gain, loss, and nonlocal couplings.

摘要

经典系统和量子系统被用于模拟伊辛哈密顿量,这是大规模优化和机器学习中的一个重要组成部分。然而,随着系统规模的增加,像量子退火器和相干伊辛机这样的设备成功率会呈指数下降。在此,我们引入一种新颖的方法,该方法涉及伊辛哈密顿量的高维嵌入以及一种名为“维度退火”的技术,以抵消性能的下降。这种方法使成功率和其他性能指标得到指数级提升,减缓了随着系统规模增大而出现的性能下降。对高性能计算中的收敛动力学进行的全面研究验证了这种新方法。此外,我们建议使用相干伊辛机、全光系统和混合数字系统等技术进行实际应用。通过调整非线性增益、损耗和非局部耦合等参数,所提出的超尺度启发式方法也可应用于其他量子或经典伊辛设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验