Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA.
Cell. 2024 Feb 1;187(3):782-796.e23. doi: 10.1016/j.cell.2023.12.027. Epub 2024 Jan 19.
The rapid kinetics of biological processes and associated short-lived conformational changes pose a significant challenge in attempts to structurally visualize biomolecules during a reaction in real time. Conventionally, on-pathway intermediates have been trapped using chemical modifications or reduced temperature, giving limited insights. Here, we introduce a time-resolved cryo-EM method using a reusable PDMS-based microfluidic chip assembly with high reactant mixing efficiency. Coating of PDMS walls with SiO virtually eliminates non-specific sample adsorption and ensures maintenance of the stoichiometry of the reaction, rendering it highly reproducible. In an operating range from 10 to 1,000 ms, the device allows us to follow in vitro reactions of biological molecules at resolution levels in the range of 3 Å. By employing this method, we show the mechanism of progressive HflX-mediated splitting of the 70S E. coli ribosome in the presence of the GTP via capture of three high-resolution reaction intermediates within 140 ms.
生物过程的快速动力学和相关的短暂构象变化给试图实时结构可视化生物分子在反应过程中的构象变化带来了重大挑战。传统上,通过化学修饰或降低温度来捕获反应途径中的中间产物,这只能提供有限的见解。在这里,我们介绍了一种使用基于 PDMS 的可重复使用微流控芯片组件的时间分辨 cryo-EM 方法,该方法具有高效的反应物混合效率。PDMS 壁的 SiO 涂层几乎消除了非特异性样品吸附,并确保了反应的化学计量比,从而使其具有高度的重现性。在 10 到 1000ms 的工作范围内,该设备允许我们以 3Å 的分辨率水平跟踪生物分子的体外反应。通过采用这种方法,我们展示了在 GTP 存在下,HflX 介导的大肠杆菌 70S 核糖体逐步分裂的机制,通过在 140ms 内捕获三个高分辨率的反应中间体。