Tian Tao, Liang Zhiwei, Wei Yuanfei, Luo Qifang, Zhou Yongquan
College of Economics, Guangxi Minzu University, Nanning 530006, China.
College of Electronic Information, Guangxi Minzu University, Nanning 530006, China.
Biomimetics (Basel). 2024 Jan 8;9(1):0. doi: 10.3390/biomimetics9010039.
With the wide application of mobile robots, mobile robot path planning (MRPP) has attracted the attention of scholars, and many metaheuristic algorithms have been used to solve MRPP. Swarm-based algorithms are suitable for solving MRPP due to their population-based computational approach. Hence, this paper utilizes the Whale Optimization Algorithm (WOA) to address the problem, aiming to improve the solution accuracy. Whale optimization algorithm (WOA) is an algorithm that imitates whale foraging behavior, and the firefly algorithm (FA) is an algorithm that imitates firefly behavior. This paper proposes a hybrid firefly-whale optimization algorithm (FWOA) based on multi-population and opposite-based learning using the above algorithms. This algorithm can quickly find the optimal path in the complex mobile robot working environment and can balance exploitation and exploration. In order to verify the FWOA's performance, 23 benchmark functions have been used to test the FWOA, and they are used to optimize the MRPP. The FWOA is compared with ten other classical metaheuristic algorithms. The results clearly highlight the remarkable performance of the Whale Optimization Algorithm (WOA) in terms of convergence speed and exploration capability, surpassing other algorithms. Consequently, when compared to the most advanced metaheuristic algorithm, FWOA proves to be a strong competitor.
随着移动机器人的广泛应用,移动机器人路径规划(MRPP)引起了学者们的关注,许多元启发式算法已被用于解决MRPP。基于群体的算法由于其基于群体的计算方法而适用于解决MRPP。因此,本文利用鲸鱼优化算法(WOA)来解决该问题,旨在提高求解精度。鲸鱼优化算法(WOA)是一种模仿鲸鱼觅食行为的算法,而萤火虫算法(FA)是一种模仿萤火虫行为的算法。本文基于上述算法提出了一种基于多种群和反向学习的混合萤火虫 - 鲸鱼优化算法(FWOA)。该算法能够在复杂的移动机器人工作环境中快速找到最优路径,并且能够平衡开发和探索能力。为了验证FWOA的性能,使用了23个基准函数对FWOA进行测试,并将它们用于优化MRPP。将FWOA与其他十种经典元启发式算法进行比较。结果清楚地突出了鲸鱼优化算法(WOA)在收敛速度和探索能力方面的卓越性能,超过了其他算法。因此,与最先进的元启发式算法相比,FWOA被证明是一个强有力的竞争者。