Suppr超能文献

血浆代谢谱可预测未来的痴呆症及痴呆亚型:274160 名参与者的前瞻性分析。

Plasma metabolic profiles predict future dementia and dementia subtypes: a prospective analysis of 274,160 participants.

机构信息

Department of Neurology and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China.

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.

出版信息

Alzheimers Res Ther. 2024 Jan 22;16(1):16. doi: 10.1186/s13195-023-01379-3.

Abstract

BACKGROUND

Blood-based biomarkers for dementia are gaining attention due to their non-invasive nature and feasibility in regular healthcare settings. Here, we explored the associations between 249 metabolites with all-cause dementia (ACD), Alzheimer's disease (AD), and vascular dementia (VaD) and assessed their predictive potential.

METHODS

This study included 274,160 participants from the UK Biobank. Cox proportional hazard models were employed to investigate longitudinal associations between metabolites and dementia. The importance of these metabolites was quantified using machine learning algorithms, and a metabolic risk score (MetRS) was subsequently developed for each dementia type. We further investigated how MetRS stratified the risk of dementia onset and assessed its predictive performance, both alone and in combination with demographic and cognitive predictors.

RESULTS

During a median follow-up of 14.01 years, 5274 participants developed dementia. Of the 249 metabolites examined, 143 were significantly associated with incident ACD, 130 with AD, and 140 with VaD. Among metabolites significantly associated with dementia, lipoprotein lipid concentrations, linoleic acid, sphingomyelin, glucose, and branched-chain amino acids ranked top in importance. Individuals within the top tertile of MetRS faced a significantly greater risk of developing dementia than those in the lowest tertile. When MetRS was combined with demographic and cognitive predictors, the model yielded the area under the receiver operating characteristic curve (AUC) values of 0.857 for ACD, 0.861 for AD, and 0.873 for VaD.

CONCLUSIONS

We conducted the largest metabolome investigation of dementia to date, for the first time revealed the metabolite importance ranking, and highlighted the contribution of plasma metabolites for dementia prediction.

摘要

背景

由于血液生物标志物具有非侵入性和在常规医疗保健环境中实施的可行性,因此它们在痴呆症领域受到了越来越多的关注。在这里,我们探讨了 249 种代谢物与全因痴呆症(ACD)、阿尔茨海默病(AD)和血管性痴呆症(VaD)之间的关联,并评估了它们的预测潜力。

方法

本研究纳入了英国生物库的 274160 名参与者。我们采用 Cox 比例风险模型来研究代谢物与痴呆症之间的纵向关联。使用机器学习算法来量化这些代谢物的重要性,并为每种痴呆类型开发了代谢风险评分(MetRS)。我们进一步研究了 MetRS 如何对痴呆症发病风险进行分层,并评估了其单独以及与人口统计学和认知预测因子相结合的预测性能。

结果

在中位随访 14.01 年期间,5274 名参与者发生了痴呆症。在检测的 249 种代谢物中,有 143 种与 ACD 的发生显著相关,130 种与 AD 相关,140 种与 VaD 相关。在与痴呆症显著相关的代谢物中,脂蛋白脂质浓度、亚油酸、神经鞘磷脂、葡萄糖和支链氨基酸的重要性排名最高。MetRS 处于最高三分位的个体比处于最低三分位的个体发生痴呆症的风险显著更高。当 MetRS 与人口统计学和认知预测因子相结合时,该模型对 ACD、AD 和 VaD 的曲线下面积(AUC)值分别为 0.857、0.861 和 0.873。

结论

我们进行了迄今为止最大规模的痴呆症代谢组学研究,首次揭示了代谢物重要性排名,并强调了血浆代谢物对痴呆症预测的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/10802055/5d441a487d13/13195_2023_1379_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验