Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary.
HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary.
Int J Mol Sci. 2024 Jan 5;25(2):697. doi: 10.3390/ijms25020697.
Carotid artery stenosis (CAS) affects approximately 5-7.5% of older adults and is recognized as a significant risk factor for vascular cognitive impairment (VCI). The impact of CAS on cerebral blood flow (CBF) within the ipsilateral hemisphere relies on the adaptive capabilities of the cerebral microcirculation. In this study, we aimed to test the hypothesis that the impaired availability of nitric oxide (NO) compromises CBF homeostasis after unilateral carotid artery occlusion (CAO). To investigate this, three mouse models exhibiting compromised production of NO were tested: NOS1 knockout, NOS1/3 double knockout, and mice treated with the NO synthesis inhibitor L-NAME. Regional CBF changes following CAO were evaluated using laser-speckle contrast imaging (LSCI). Our findings demonstrated that NOS1 knockout, NOS1/3 double knockout, and L-NAME-treated mice exhibited impaired CBF adaptation to CAO. Furthermore, genetic deficiency of one or two NO synthase isoforms increased the tortuosity of pial collaterals connecting the frontoparietal and temporal regions. In conclusion, our study highlights the significant contribution of NO production to the functional adaptation of cerebrocortical microcirculation to unilateral CAO. We propose that impaired bioavailability of NO contributes to the impaired CBF homeostasis by altering inter- and intrahemispheric blood flow redistribution after unilateral disruption of carotid artery flow.
颈动脉狭窄(CAS)影响约 5-7.5%的老年人,被认为是血管性认知障碍(VCI)的重要危险因素。患侧大脑半球内颈内动脉闭塞(CAO)后,大脑中动脉狭窄对大脑血液流量(CBF)的影响取决于脑微循环的适应能力。在这项研究中,我们旨在验证以下假设:一氧化氮(NO)可用性受损会损害 CAO 后的 CBF 稳态。为了验证这一假说,我们测试了三种 NO 生成受损的小鼠模型:NOS1 基因敲除、NOS1/3 双基因敲除和用 NO 合成抑制剂 L-NAME 处理的小鼠。采用激光散斑对比成像(LSCI)评估 CAO 后局部 CBF 的变化。我们的研究结果表明,NOS1 基因敲除、NOS1/3 双基因敲除和 L-NAME 处理的小鼠在 CAO 时的 CBF 适应能力受损。此外,一种或两种一氧化氮合酶同工酶的基因缺失增加了连接额顶区和颞区的软脑膜侧支的迂曲度。总之,本研究强调了 NO 生成对大脑皮质微循环对单侧 CAO 的功能适应的重要贡献。我们提出,NO 生物利用度受损通过改变颈内动脉血流中断后半球间和半球内的血流再分配,导致 CBF 稳态受损。