National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, 610064, China.
Adv Mater. 2024 May;36(21):e2312799. doi: 10.1002/adma.202312799. Epub 2024 Feb 23.
It is challenging to detect and differentiate multiple diseases with high complexity/similarity from the same organ. Metabolic analysis based on nanomatrix-assisted laser desorption/ionization mass spectrometry (NMALDI-MS) is a promising platform for disease diagnosis, while the enhanced property of its core nanomatrix materials has plenty of room for improvement. Herein, a multidimensional interactive cascade nanochip composed of iron oxide nanoparticles (FeNPs)/MXene/gold nanoparticles (AuNPs), IMG, is reported for serum metabolic profiling to achieve high-throughput detection of multiple liver diseases. MXene serves as a multi-binding site and an electron-hole source for ionization during NMALDI-MS analysis. Introduction of AuNPs with surface plasmon resonance (SPR) properties facilitates surface charge accumulation and rapid energy conversion. FeNPs are integrated into the MXene/Au nanocomposite to sharply reduce the thermal conductivity of the nanochip with negligible heat loss for strong thermally-driven desorption, and construct a multi-interaction proton transport pathway with MXene and AuNPs for strong ionization. Analysis of these enhanced serum fingerprint signals detected from the IMG nanochip through a neural network model results in differentiation of multiple liver diseases via a single pass and revelation of potential metabolic biomarkers. The promising method can rapidly and accurately screen various liver diseases, thus allowing timely treatment of liver diseases.
从同一器官中检测和区分具有高复杂性/相似性的多种疾病具有挑战性。基于纳米基质辅助激光解吸/电离质谱(N MALDI-MS)的代谢分析是一种很有前途的疾病诊断平台,而其核心纳米基质材料的增强性能还有很大的改进空间。在此,报道了一种由氧化铁纳米颗粒(FeNPs)/MXene/金纳米颗粒(AuNPs)、IMG 组成的多维交互式级联纳米芯片,用于血清代谢分析,以实现高通量检测多种肝脏疾病。MXene 作为 NMALDI-MS 分析过程中的多结合位点和电子空穴源,用于离子化。具有表面等离子体共振(SPR)性质的 AuNPs 的引入促进了表面电荷积累和快速能量转换。FeNPs 被整合到 MXene/Au 纳米复合材料中,可显著降低纳米芯片的热导率,同时几乎没有热损失,从而实现强烈的热驱动解吸,并与 MXene 和 AuNPs 构建了一个多相互作用的质子传输途径,从而实现强烈的离子化。通过神经网络模型分析从 IMG 纳米芯片中检测到的这些增强的血清指纹信号,可通过单次通过区分多种肝脏疾病,并揭示潜在的代谢生物标志物。这种很有前途的方法可以快速准确地筛选各种肝脏疾病,从而及时治疗肝脏疾病。