Suppr超能文献

基于空间主成分分析的综合干旱指数及其在中国北方的应用。

A comprehensive drought index based on spatial principal component analysis and its application in northern China.

机构信息

College of Geography and Environmental Science, Northwest Normal University, 967 Anning East Road, Lanzhou, 730070, Gansu, People's Republic of China.

Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.

出版信息

Environ Monit Assess. 2024 Jan 24;196(2):193. doi: 10.1007/s10661-024-12366-y.

Abstract

In the background of the greenhouse effect, drought events occurred more frequently. How to monitor drought events scientifically and efficiently is very urgent at present. In this study, we employed the Vegetation Water Supply Index (VSWI), Temperature Vegetation Drought Index (TVDI), and Crop Water Stress Index (CWSI) as individual variables to construct a composite drought index (CDI) using spatial principal component analysis (SPCA). The validity of CDI was assessed using gross primary productivity (GPP), soil moisture (SM), Standardized Precipitation Evapotranspiration Index (SPEI), and Vegetation Condition Index (VCI). CDI was subsequently used for drought monitoring in northern China from 2011 to 2020. The results showed that (1) at a 99% confidence level, the Pearson correlation coefficients between CDI and GPP was 0.72, while the value between CDI and SM was 0.69, which indicated the relationship between SM, GPP, and CDI was significant. (2) We compared CDI with other variables such as Standardized Precipitation Evapotranspiration Index (SPEI) and Crop Drought Index (CDI) and found that the monitoring result of CDI was more sensitive, which indicated that the proposed CDI had a better effect in local drought monitoring. (3) The results of CDI showed that the drought status in the northern region during 2011-2020 lasted from March to October, and the high severe drought period generally occurs in March-May and September-October, with low severe drought in June-August.

摘要

在温室效应的背景下,干旱事件发生得更加频繁。如何科学高效地监测干旱事件是目前非常紧迫的问题。在本研究中,我们分别采用植被供水指数(VSWI)、温度植被干旱指数(TVDI)和作物水分胁迫指数(CWSI)作为个体变量,利用空间主成分分析(SPCA)构建了一个综合干旱指数(CDI)。利用总初级生产力(GPP)、土壤水分(SM)、标准化降水蒸散指数(SPEI)和植被状况指数(VCI)对 CDI 的有效性进行了评估。随后,我们利用 CDI 对 2011 年至 2020 年中国北方的干旱情况进行了监测。结果表明:(1)在 99%的置信水平下,CDI 与 GPP 的 Pearson 相关系数为 0.72,与 SM 的 Pearson 相关系数为 0.69,表明 SM、GPP 与 CDI 之间存在显著关系。(2)我们将 CDI 与其他变量(如标准化降水蒸散指数(SPEI)和作物干旱指数(CDI))进行了比较,发现 CDI 的监测结果更为敏感,这表明所提出的 CDI 在中国北方的干旱监测中效果更好。(3)CDI 的结果表明,2011-2020 年期间,北方地区的干旱状况从 3 月持续到 10 月,高严重干旱期一般出现在 3 月至 5 月和 9 月至 10 月,6 月至 8 月则为低严重干旱期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验