Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK.
Usher Institute, Centre for Global Health Research, University of Edinburgh, Craigour House, 450 Old Dalkeith Rd, Edinburgh, EH16 4SS, UK.
Mol Psychiatry. 2024 May;29(5):1521-1527. doi: 10.1038/s41380-024-02431-w. Epub 2024 Jan 25.
Evidence from diverse areas of research including chronobiology, metabolomics and magnetic resonance spectroscopy indicate that energy dysregulation is a central feature of bipolar disorder pathophysiology. In this paper, we propose that mania represents a condition of heightened cerebral energy metabolism facilitated by hyperglycolysis and glutaminolysis. When oxidative glucose metabolism becomes impaired in the brain, neurons can utilize glutamate as an alternative substrate to generate energy through oxidative phosphorylation. Glycolysis in astrocytes fuels the formation of denovo glutamate, which can be used as a mitochondrial fuel source in neurons via transamination to alpha-ketoglutarate and subsequent reductive carboxylation to replenish tricarboxylic acid cycle intermediates. Upregulation of glycolysis and glutaminolysis in this manner causes the brain to enter a state of heightened metabolism and excitatory activity which we propose to underlie the subjective experience of mania. Under normal conditions, this mechanism serves an adaptive function to transiently upregulate brain metabolism in response to acute energy demand. However, when recruited in the long term to counteract impaired oxidative metabolism it may become a pathological process. In this article, we develop these ideas in detail, present supporting evidence and propose this as a novel avenue of investigation to understand the biological basis for mania.
来自于包括时间生物学、代谢组学和磁共振波谱学等不同领域的证据表明,能量失调是双相情感障碍病理生理学的一个核心特征。在本文中,我们提出躁狂症代表了一种大脑能量代谢增强的状态,这种增强是由高糖酵解和谷氨酰胺分解作用所促成的。当大脑中的氧化葡萄糖代谢受损时,神经元可以利用谷氨酸作为替代底物,通过氧化磷酸化产生能量。星形胶质细胞中的糖酵解为新生成的谷氨酸提供燃料,谷氨酸可以通过转氨基作用转化为α-酮戊二酸,并随后通过还原羧化作用补充三羧酸循环中间产物,从而作为神经元的线粒体燃料来源。以这种方式上调糖酵解和谷氨酰胺分解作用会导致大脑进入代谢和兴奋活动增强的状态,我们认为这是躁狂症主观体验的基础。在正常情况下,这种机制作为一种适应性功能,会短暂地上调大脑代谢以应对急性能量需求。然而,当长期被招募来对抗氧化代谢受损时,它可能成为一种病理过程。在本文中,我们详细阐述了这些想法,提供了支持性证据,并提出这是理解躁狂症生物学基础的一个新的研究途径。