Suppr超能文献

MIWE:通过互信息加权熵检测复杂生物系统的临界状态

MIWE: detecting the critical states of complex biological systems by the mutual information weighted entropy.

作者信息

Xie Yuke, Peng Xueqing, Li Peiluan

机构信息

School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China.

Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.

出版信息

BMC Bioinformatics. 2024 Jan 27;25(1):44. doi: 10.1186/s12859-024-05667-z.

Abstract

Complex biological systems often undergo sudden qualitative changes during their dynamic evolution. These critical transitions are typically characterized by a catastrophic progression of the system. Identifying the critical point is critical to uncovering the underlying mechanisms of complex biological systems. However, the system may exhibit minimal changes in its state until the critical point is reached, and in the face of high throughput and strong noise data, traditional biomarkers may not be effective in distinguishing the critical state. In this study, we propose a novel approach, mutual information weighted entropy (MIWE), which uses mutual information between genes to build networks and identifies critical states by quantifying molecular dynamic differences at each stage through weighted differential entropy. The method is applied to one numerical simulation dataset and four real datasets, including bulk and single-cell expression datasets. The critical states of the system can be recognized and the robustness of MIWE method is verified by numerical simulation under the influence of different noises. Moreover, we identify two key transcription factors (TFs), CREB1 and CREB3, that regulate downstream signaling genes to coordinate cell fate commitment. The dark genes in the single-cell expression datasets are mined to reveal the potential pathway regulation mechanism.

摘要

复杂生物系统在其动态演化过程中常常经历突然的质性变化。这些关键转变通常以系统的灾难性进展为特征。识别临界点对于揭示复杂生物系统的潜在机制至关重要。然而,在达到临界点之前,系统可能在其状态上表现出最小的变化,并且面对高通量和强噪声数据时,传统生物标志物可能无法有效区分临界状态。在本研究中,我们提出了一种新方法,互信息加权熵(MIWE),该方法利用基因之间的互信息构建网络,并通过加权微分熵量化每个阶段的分子动态差异来识别临界状态。该方法应用于一个数值模拟数据集和四个真实数据集,包括批量和单细胞表达数据集。通过在不同噪声影响下的数值模拟,可以识别系统的临界状态并验证MIWE方法的稳健性。此外,我们鉴定出两个关键转录因子(TFs),即CREB1和CREB3,它们调节下游信号基因以协调细胞命运决定。挖掘单细胞表达数据集中的暗基因以揭示潜在的通路调控机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1f4/10822190/ea3c18d032fa/12859_2024_5667_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验