Suppr超能文献

利用[F]FDG PET同时估计用于量化脑葡萄糖代谢的模型衍生输入函数。

Simultaneous estimation of a model-derived input function for quantifying cerebral glucose metabolism with [F]FDG PET.

作者信息

Narciso Lucas, Deller Graham, Dassanayake Praveen, Liu Linshan, Pinto Samara, Anazodo Udunna, Soddu Andrea, Lawrence Keith St

机构信息

Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.

Department of Psychiatry, University of Toronto, Toronto, ON, Canada.

出版信息

EJNMMI Phys. 2024 Jan 29;11(1):11. doi: 10.1186/s40658-024-00614-6.

Abstract

BACKGROUND

Quantification of the cerebral metabolic rate of glucose (CMRGlu) by dynamic [F]FDG PET requires invasive arterial sampling. Alternatives to using an arterial input function (AIF) include the simultaneous estimation (SIME) approach, which models the image-derived input function (IDIF) by a series of exponentials with coefficients obtained by fitting time activity curves (TACs) from multiple volumes-of-interest. A limitation of SIME is the assumption that the input function can be modelled accurately by a series of exponentials. Alternatively, we propose a SIME approach based on the two-tissue compartment model to extract a high signal-to-noise ratio (SNR) model-derived input function (MDIF) from the whole-brain TAC. The purpose of this study is to present the MDIF approach and its implementation in the analysis of animal and human data.

METHODS

Simulations were performed to assess the accuracy of the MDIF approach. Animal experiments were conducted to compare derived MDIFs to measured AIFs (n = 5). Using dynamic [F]FDG PET data from neurologically healthy volunteers (n = 18), the MDIF method was compared to the original SIME-IDIF. Lastly, the feasibility of extracting parametric images was investigated by implementing a variational Bayesian parameter estimation approach.

RESULTS

Simulations demonstrated that the MDIF can be accurately extracted from a whole-brain TAC. Good agreement between MDIFs and measured AIFs was found in the animal experiments. Similarly, the MDIF-to-IDIF area-under-the-curve ratio from the human data was 1.02 ± 0.08, resulting in good agreement in grey matter CMRGlu: 24.5 ± 3.6 and 23.9 ± 3.2 mL/100 g/min for MDIF and IDIF, respectively. The MDIF method proved superior in characterizing the first pass of [F]FDG. Groupwise parametric images obtained with the MDIF showed the expected spatial patterns.

CONCLUSIONS

A model-driven SIME method was proposed to derive high SNR input functions. Its potential was demonstrated by the good agreement between MDIFs and AIFs in animal experiments. In addition, CMRGlu estimates obtained in the human study agreed to literature values. The MDIF approach requires fewer fitting parameters than the original SIME method and has the advantage that it can model the shape of any input function. In turn, the high SNR of the MDIFs has the potential to facilitate the extraction of voxelwise parameters when combined with robust parameter estimation methods such as the variational Bayesian approach.

摘要

背景

通过动态[F]FDG PET定量脑葡萄糖代谢率(CMRGlu)需要进行有创动脉采样。使用动脉输入函数(AIF)的替代方法包括同时估计(SIME)方法,该方法通过一系列指数对图像衍生输入函数(IDIF)进行建模,指数系数通过拟合多个感兴趣区域的时间-活性曲线(TAC)获得。SIME的一个局限性是假设输入函数可以通过一系列指数准确建模。另外,我们提出了一种基于双组织室模型的SIME方法,以从全脑TAC中提取高信噪比(SNR)的模型衍生输入函数(MDIF)。本研究的目的是介绍MDIF方法及其在动物和人类数据分析中的应用。

方法

进行模拟以评估MDIF方法的准确性。进行动物实验以比较衍生的MDIF与测量的AIF(n = 5)。使用来自神经健康志愿者(n = 18)的动态[F]FDG PET数据,将MDIF方法与原始SIME-IDIF进行比较。最后,通过实施变分贝叶斯参数估计方法研究提取参数图像的可行性。

结果

模拟表明可以从全脑TAC中准确提取MDIF。在动物实验中发现MDIF与测量的AIF之间具有良好的一致性。同样,来自人类数据的MDIF与IDIF的曲线下面积比为1.02±0.08,导致灰质CMRGlu具有良好的一致性:MDIF和IDIF分别为24.5±3.6和23.9±3.2 mL/100 g/min。MDIF方法在表征[F]FDG的首次通过方面被证明更优越。使用MDIF获得的分组参数图像显示出预期的空间模式。

结论

提出了一种模型驱动的SIME方法来推导高SNR输入函数。在动物实验中MDIF与AIF之间的良好一致性证明了其潜力。此外,在人类研究中获得的CMRGlu估计值与文献值一致。MDIF方法比原始SIME方法需要更少的拟合参数,并且具有可以对任何输入函数的形状进行建模的优点。反过来,MDIF的高SNR有可能在与诸如变分贝叶斯方法等稳健的参数估计方法结合时促进体素参数的提取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/10825104/7f76f2a9b85a/40658_2024_614_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验