Suppr超能文献

通过整合电阻率层析成像和反应传输建模实时监测溶解 TCE 的原位化学氧化 (ISCO)。

Real-time monitoring of in situ chemical oxidation (ISCO) of dissolved TCE by integrating electrical resistivity tomography and reactive transport modeling.

机构信息

Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.

Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.

出版信息

Water Res. 2024 Mar 15;252:121195. doi: 10.1016/j.watres.2024.121195. Epub 2024 Jan 26.

Abstract

Successful in situ chemical oxidation (ISCO) applications require real-time monitoring to assess the oxidant delivery and treatment effectiveness, and to support rapid and cost-effective decision making. Existing monitoring methods often suffer from poor spatial coverage given a limited number of boreholes in most field conditions. The ionic nature of oxidants (e.g., permanganate) makes time-lapse electrical resistivity tomography (ERT) a potential monitoring tool for ISCO. However, time-lapse ERT is usually limited to qualitative analysis because it cannot distinguish between the electrical responses of the ionic oxidant and the ionic products from contaminant oxidation. This study proposed a real-time quantitative monitoring approach for ISCO by integrating time-lapse ERT and physics-based reactive transport models (RTM). Moving past common practice, where an electrical-conductivity anomaly in an ERT survey would be roughly linked to concentrations of anything ionic, we used PHT3D as our RTM to distinguish the contributions from the ionic oxidant and the ionic products and to quantify the spatio-temporal evolution of all chemical components. The proposed approach was evaluated through laboratory column experiments for trichloroethene (TCE) remediation. This ISCO experiment was monitored by both time-lapse ERT and downstream sampling. We found that changes in inverted bulk electrical conductivity, unsurprisingly, did not correlate well with the observed permanganate concentrations due to the ionic products. By integrating time-lapse ERT and RTM, the distribution of all chemical components was satisfactorily characterized and quantified. Measured concentration data from limited locations and the non-intrusive ERT data were found to be complementary for ISCO monitoring. The inverted bulk conductivity data were effective in capturing the spatial distribution of ionic species, while the concentration data provided information regarding dissolved TCE. Through incorporating multi-source data, the error of quantifying ISCO efficiency was kept at most 5 %, compared to errors that can reach up to 68 % when relying solely on concentration data.

摘要

成功的原位化学氧化 (ISCO) 应用需要实时监测来评估氧化剂的输送和处理效果,并支持快速和具有成本效益的决策。在大多数现场条件下,由于钻孔数量有限,现有的监测方法往往存在空间覆盖范围差的问题。氧化剂(例如高锰酸盐)的离子特性使得时移电阻率层析成像 (ERT) 成为 ISCO 的一种潜在监测工具。然而,时移 ERT 通常仅限于定性分析,因为它无法区分离子氧化剂和污染物氧化产生的离子产物的电响应。本研究通过整合时移 ERT 和基于物理的反应传输模型 (RTM),提出了一种用于 ISCO 的实时定量监测方法。过去,ERT 调查中的电导率异常通常与任何离子的浓度大致相关,这是常见做法。我们使用 PHT3D 作为我们的 RTM,以区分离子氧化剂和离子产物的贡献,并量化所有化学组分的时空演化。该方法通过实验室柱实验进行了评估,用于三氯乙烯 (TCE) 修复。该 ISCO 实验通过时移 ERT 和下游采样进行监测。我们发现,由于离子产物,倒置的整体电导率的变化与观察到的高锰酸盐浓度并没有很好地相关,这并不奇怪。通过整合时移 ERT 和 RTM,可以很好地描述和量化所有化学组分的分布。从有限位置测量的浓度数据和非侵入性 ERT 数据被发现对于 ISCO 监测是互补的。倒置的整体电导率数据有效地捕获了离子物种的空间分布,而浓度数据提供了有关溶解 TCE 的信息。通过整合多源数据,与仅依赖浓度数据时可能达到 68%的误差相比,量化 ISCO 效率的误差保持在最大 5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验